SKT 300

=6=	
	1
	1

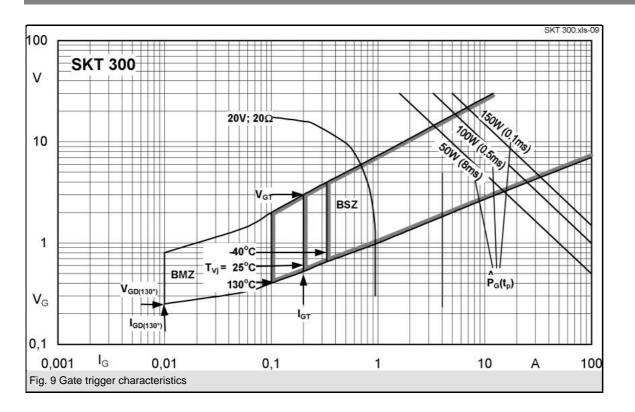
Stud Thyristor

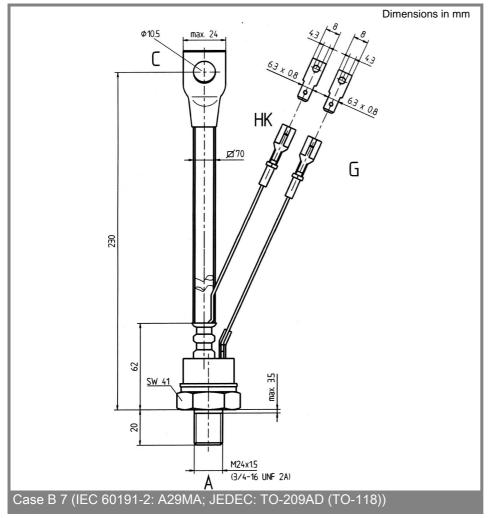
Line Thyristor

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 550 A (maximum value for continuous operation)		
V	V	I _{TAV} = 300 A (sin. 180; T _c = 93 °C)		
500	400	SKT 300/04D		
900	800	SKT 300/08D ¹⁾		
1300	1200	SKT 300/12E ¹⁾		
1500	1400	SKT 300/14E ¹⁾		
1700	1600	SKT 300/16E ¹⁾		

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	257 (351)	А
ID	K0,55; T _a = 45 °C; B2 / B6	250 / 360	А
	K0,55F; T _a = 35 °C; B2 / B5	570 /800	А
I _{RMS}	K0,55; T _a = 45 °C; W1C	280	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	11000	А
	T _{vi} = 130 °C; 10 ms	10000	А
i²t	T _{vj} = 25 °C; 8,35 10 ms	600000	A²s
	T _{vj} = 130 °C; 8,35 10 ms	500000	A²s
V _T	T _{vi} = 25 °C; I _T = 800 A	max. 1,45	V
V _{T(TO)}	T _{vi} = 130 °C	max. 0,9	V
r _T	T _{vi} = 130 °C	max. 0,5	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 130 \text{ °C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 50	mA
t _{gd}	T _{vi} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 100	A/µs
(dv/dt) _{cr}	T _{vi} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t _q	T _{vi} = 130 °C ,	50 150	μs
I _H	T _{vi} = 25 °C; typ. / max.	150 / 250	mA
IL.	T _{vi} = 25 °C; R _G = 33 Ω; typ. / max.	300 / 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	T _{vi} = 25 °C; d.c.	min. 200	mA
V _{GD}	T _{vi} = 130 °C; d.c.	max. 0,25	V
I _{GD}	T _{vi} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.	0,09	K/W
R _{th(j-c)}	sin. 180	0,096	K/W
R _{th(j-c)}	rec. 120	0,101	K/W
R _{th(c-s)}		0,015	K/W
T _{vi}		- 40 + 130	°C
T _{stg}		- 55 + 150	°C
V _{isol}		-	V~
M _s	to heatsink	60 (UNF: 30)	Nm
aັ		5 * 9,81	m/s²
m	approx.	490	g
, Case		B 7	

Features


SKT 300


- · Hermetic metal case with glass insulator
- Threaded stud ISO M24x1,5 or UNF 3/4-16
- High i²t and I_{TSM} values for easily fusing
- International standard case

Typical Applications

- DC motor control (e.g. for machine tools)
- Controlled rectifiers (e.g. for battery charging)
- AC controllers (e.g. for temperature control)
- Recommended snubber netwo e. g. for $V_{VRMS} \leq 400$ V: R = 33 $\Omega/32$ W, C = 0,47 μF
- 1) available with UNF thread 3/4-16 UNF e.g. SKT 300/08D UNF

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

4