
SKT 250

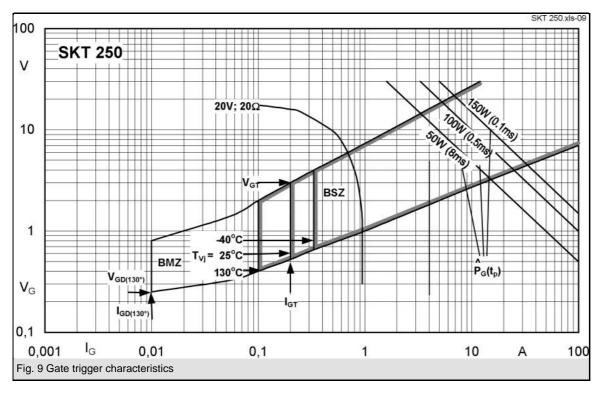
Stud Thyristor

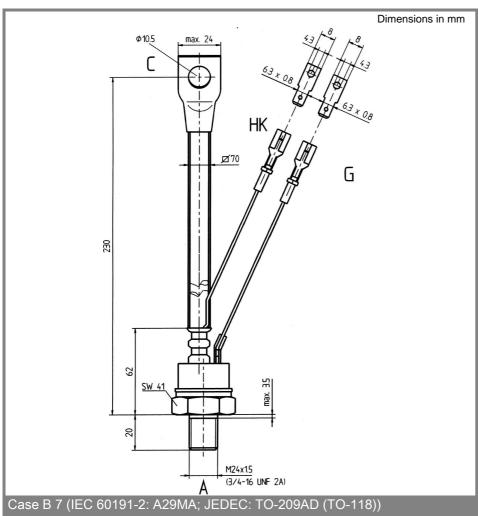
Line Thyristor

SKT 250

Features

- Hermetic metal case with glass insulator
- Threaded stud ISO M24x1,5
- High i²t and I_{TSM} values for easy fusing
- · International standard case


Typical Applications


- DC motor control (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers
 (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 33 $\Omega/32$ W, C = 0,47 μF

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 450 A (maximum value for continuous operation)		
V	V	I _{TAV} = 250 A (sin. 180; T _c = 85 °C)		
500	400	SKT 250/04D		
900	800	SKT 250/08D		
1300	1200	SKT 250/12E		
1500	1400	SKT 250/14E		
1700	1600	SKT 250/16E		

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	185 (250)	Α
I _D	K0,55; T _a = 45 °C; B2 / B6	240 / 330	Α
	$K0,55F; T_a = 35 °C; B2 / B5$	490 /675	Α
I _{RMS}	K0,55; T _a = 45 °C; W1C	265	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	7000	Α
	T _{vi} = 130 °C; 10 ms	6000	Α
i²t	T _{vj} = 25 °C; 8,35 10 ms	245000	A²s
	T _{vj} = 130 °C; 8,35 10 ms	180000	A²s
V_{T}	T _{vj} = 25 °C; I _T = 800 A	max. 1,65	V
$V_{T(TO)}$	T _{vj} = 130 °C	max. 1	V
r _T	$T_{vj} = 130 ^{\circ}C$	max. 0,7	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 130 °C; V_{RD} = V_{RRM} , V_{DD} = V_{DRM}	max. 50	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 130 °C	max. 100	A/µs
(dv/dt) _{cr}	T _{vj} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t_q	$T_{vj} = 130 ^{\circ}\text{C}$,	50 150	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 250	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 600	mA
V_{GT}	T_{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj}^{s} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.	0,11	K/W
R _{th(j-c)}	sin. 180	0,123	K/W
$R_{th(j-c)}$	rec. 120	0,137	K/W
$R_{th(c-s)}$		0,015	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 55 + 150	°C
V _{isol}		-	V~
M_s	to heatsink	60	Nm
а		5 * 9,81	m/s²
m	approx.	490	g
Case		B 7	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.