SKT 240

WKRUNSKT 240/08E

 $V_{\rm RSM}$

V

500

900 1300

1500

1700

1900

 $V_{\rm RRM}, V_{\rm DRM}$

V

400 800

1200

1400

1600

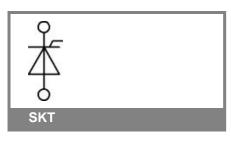
1800

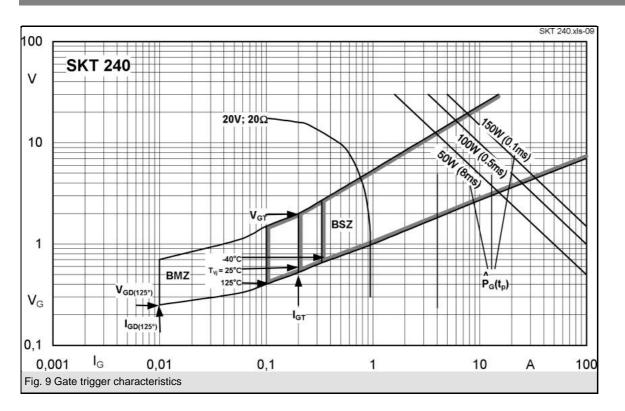
SKT 240/04E

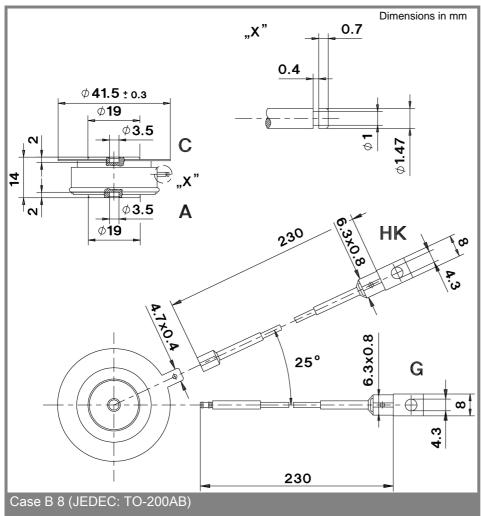
SKT 240/08E

SKT 240/12E

SKT 240/14E


SKT 240/16E


SKT 240/18E


	Symbol	Conditions	Values	Units
Capsule Thyristor	I _{TAV}	sin. 180; T _c = 100 (85) °C;	204 (282)	А
	I _D	2 x P8/180; T _a = 45 °C; B2 / B6	275 / 390	А
1 · · · · · · · · · · · ·		2 x P8/180F; T _a = 35 °C; B2 / B6	540 /750	A
Line Thyristor	I _{RMS}	2 x P8/180; T _a = 45 °C; W1C	300	А
	I _{TSM}	T _{vi} = 25 °C; 10 ms	5000	А
		T _{vj} = 125 °C; 10 ms	4500	А
SKT 240	i²t	T _{vj} = 25 °C; 8,3 10 ms	125000	A²s
		T _{vj} = 125 °C; 8,3 10 ms	101000	A²s
	V _T	T _{vi} = 25 °C; I _T = 1000 A	max. 2,3	V
	V _{T(TO)}	T _{vj} = 125 °C	max. 1	V
	r _T	T _{vj} = 125 °C	max. 1,4	mΩ
	I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 40	mA
F and the set	t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
Features	t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
Hermetic metal case with ceramic	(di/dt) _{cr}	T _{vi} = 125 °C	max. 125	A/µs
insulator	(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
Capsule package for double	t _a	T _{vi} = 125 °C ,	50 150	μs
sided cooling	t _q I _H	T _{vj} = 25 °C; typ. / max.	150 / 400	mA
Shallow design with single sided	Ι _L	T _{vj} = 25 °C; typ. / max.	300 / 1000	mA
cooling	V _{GT}	T _{vi} = 25 °C; d.c.	min. 2	V
 International standard case 	I _{GT}	$T_{vj} = 25 \text{ °C}; \text{ d.c.}$	min. 150	mA
Off-state and reverse voltages up	V_{GD}	$T_{vj} = 125 \text{ °C; d.c.}$	max. 0,25	V
to1800 V	I _{GD}	T _{vj} = 125 °C; d.c.	max. 10	mA
Typical Applications	R _{th(j-c)}	cont.; DSC	0,07	K/W
Typical Applications	R _{th(j-c)}	sin. 180; DSC / SSC	0,072 / 0,151	K/W
DC motor control	R _{th(j-c)}	rec. 120; DSC / SSC	0,08 / 0,168	K/W
(e. g. for machine tools)	R _{th(c-s)}	DSC / SSC	0,02 / 0,04	K/W
 Controlled rectifiers 	Τ _{νj}		- 40 + 125	°C
(e. g. for battery charging)	T _{stg}		- 40 + 130	°C
AC controllers	V _{isol}		-	V~
(e.g. for temperature control)	F	mounting force	4 5	kN
Recommended snubber network	а			m/s²
e. g. for $V_{VRMS} \le 400 V$:	m	approx.	55	g
R = 33 Ω/32 Ŵ, C = 0,47 μF	Case		B 8	

 I_{TRMS} = 600 A (maximum value for continuous operation)

 I_{TAV} = 240 A (sin. 180; DSC; T_c = 93 °C)

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

08-02-2005 SCT