
SKT 160

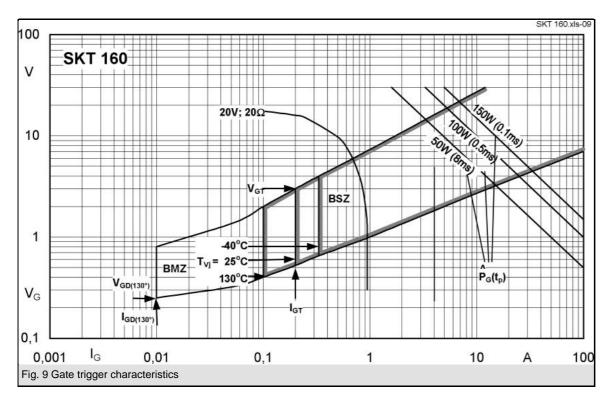
Stud Thyristor

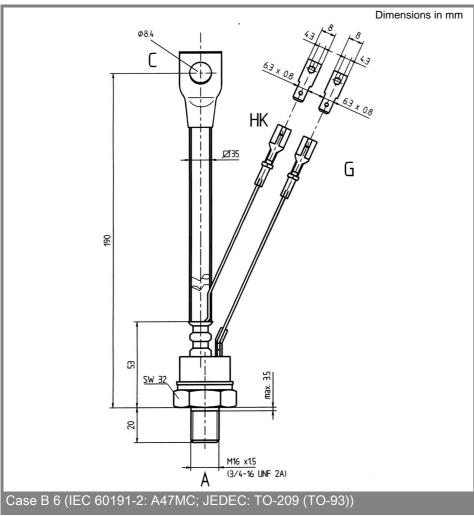
Line Thyristor

SKT 160

Features

- Hermetic metal case with glass insulator
- Threaded stud ISO M16x1,5 or UNF 3/4-16
- · International standard case


Typical Applications


- DC motor control (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers
 (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 33 $\Omega/13$ W, C = 0,47 μF
- Available with UNF thread 3/4-16 UNF2A;
 e. g. SKT 160/12E UNF

V_{RRM}, V_{DRM}	I _{TRMS} = 280 A (maximum value for continuous operation)		
V	I _{TAV} = 160 A (sin. 180; T _c = 84 °C)		
400	SKT 160/04D		
600	SKT 160/06D		
800	SKT 160/08D		
1200	SKT 160/12E ¹⁾		
1400	SKT 160/14E		
1600	SKT 160/16E ¹⁾		
	V 400 600 800 1200 1400		

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	116 (158)	Α
I_D	K1,1; T _a = 45 °C; B2 / B6	110 / 150	Α
	K0,55; T _a = 45 °C; B2 / B6	170 /240	Α
$I_{\rm RMS}$	K0,55; T _a = 45 °C; W1C	190	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	4300	А
	$T_{vj} = 130 ^{\circ}\text{C}; 10 \text{ms}$	3750	Α
i²t	T _{vj} = 25 °C; 8,35 10 ms	92500	A²s
	T _{vj} = 130 °C; 8,35 10 ms	70000	A²s
V _T	T _{vi} = 25 °C; I _T = 500 A	max. 1,75	V
$V_{T(TO)}$	T _{vi} = 130 °C	max. 1	V
r _T	$T_{vj} = 130 ^{\circ}\text{C}$	max. 1,5	$m\Omega$
I_{DD} ; I_{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} , V_{DD} = V_{DRM}	max. 50	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 100	A/µs
(dv/dt) _{cr}	T _{vj} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t_q	$T_{vj} = 130 ^{\circ}\text{C}$,	120	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 250	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 600	mA
V_{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.	0,16	K/W
R _{th(j-c)}	sin. 180	0,18	K/W
R _{th(j-c)}	rec. 120	0,2	K/W
R _{th(c-s)}		0,03	K/W
T_{vj}		- 40 + 130	°C
T _{stg}		- 55 + 150	°C
V _{isol}		-	V~
M_s	to heatsink	30	Nm
а		5 * 9,81	m/s²
m	approx.	250	g
Case		B 6	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.