SKT 1000

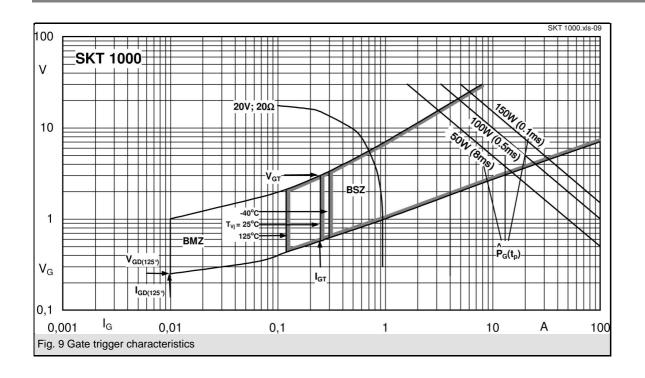
Capsule Thyristor

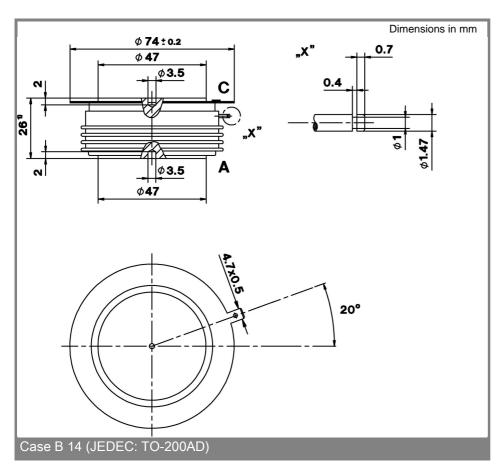
Line Thyristor

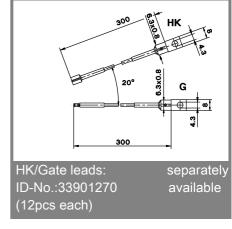
SKT 1000

Features

- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- · International standard case
- Off-state and reverse voltages up to 2800 V
- · Amplifying gate


Typical Applications


- DC motor control (e. g. for machine tools)
- Controlled rectifiers(e. g. for battery charging)
- AC controllers
 - (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 33 $\Omega/32$ W, C = 1 μF


V_{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 2300 A (maximum value for continuous operation)		
V	V	I _{TAV} = 1000 A (sin. 180; DSC; T _c = 85 °C)		
1300	1200	SKT 1000/12E		
1700	1600	SKT 1000/16E		
2300	2200	SKT 1000/22EL2		
2700	2600	SKT 1000/26EL2		
2900	2800	SKT 1000/28EL2		

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	710 (1000)	Α
I_D	2 x P8/180; T _a = 45 °C; B2 / B6	360 / 500	Α
	2 x P8/180F; T _a = 35 °C; B2 / B6	1250 /1750	Α
I _{RMS}	2 x P8/180; T _a = 45 °C; W1C	400	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	19000	Α
	T_{vj} = 125 °C; 10 ms	16500	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	1800000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	1360000	A²s
V_{T}	T _{vj} = 25 °C; I _T = 3600 A	max. 2	V
$V_{T(TO)}$	$T_{vj} = 125 ^{\circ}\text{C}$	max. 1,14	V
r _T	$T_{vj} = 125 ^{\circ}\text{C}$	max. 0,243	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 160	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 125 °C	max. 125	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t _q	$T_{vj} = 125 ^{\circ}\text{C}$,	100 250	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	250 / 500	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	500 / 2000	mA
V _{GT}	T_{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 250	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,021	K/W
$R_{th(j-c)}$	sin. 180; DSC / SSC	0,0225 / 0,054	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,027 / 0,06	K/W
R _{th(c-s)}	DSC / SSC	0,005 / 0,01	K/W
T_{vj}		- 40 + 125	°C
T _{stg}		- 40 + 130	°C
V _{isol}		-	V~
-	mounting force	22 25	kN
а			m/s²
m	approx.	480	g
Case		B 14	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.