## SKM 50GB12T4



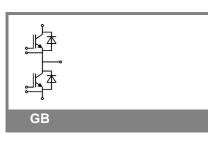
SEMITRANS<sup>®</sup> 2

## **IGBT4** Modules

### SKM 50GB12T4

Target Data

### Features


- IGBT4 = 4. Generation (Trench) IGBT
- V<sub>CEsat</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>CNOM</sub>
  Soft switching 4. Generation CAL
- Soft switching 4. Generation CAL diode (CALI4)

## **Typical Applications**


- AC inverter drives
- UPS
- Electronic welders at f<sub>sw</sub> up to 20 kHz

| Absolute Maximum Ratings T <sub>c</sub> = 25 °C, unless otherwise specif |                                                       |                           |          |       |
|--------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|----------|-------|
| Symbol                                                                   | Conditions                                            |                           | Values   | Units |
| IGBT                                                                     |                                                       |                           |          |       |
| V <sub>CES</sub>                                                         | T <sub>j</sub> = 25 °C                                |                           | 1200     | V     |
| I <sub>C</sub>                                                           | T <sub>j</sub> = 175 °C                               | T <sub>case</sub> = 25 °C | 80       | А     |
|                                                                          |                                                       | T <sub>case</sub> = 80 °C | 60       | Α     |
| I <sub>CRM</sub>                                                         | I <sub>CRM</sub> = 3 x I <sub>CNOM</sub>              |                           | 150      | А     |
| $V_{GES}$                                                                |                                                       |                           | ± 20     | V     |
| t <sub>psc</sub>                                                         | $V_{CC}$ = 600 V; $V_{GE} \le 15$ V;<br>VCES < 1200 V | T <sub>j</sub> = 125 °C   | 10       | μs    |
| Inverse                                                                  | Diode                                                 |                           |          |       |
| I <sub>F</sub>                                                           | T <sub>j</sub> = 175 °C                               | T <sub>case</sub> = 25 °C | 65       | А     |
|                                                                          |                                                       | T <sub>case</sub> = 80 °C | 50       | А     |
| I <sub>FRM</sub>                                                         | $I_{FRM} = 3 \times I_{FNOM}$                         |                           | 150      | А     |
| I <sub>FSM</sub>                                                         | t <sub>p</sub> = 10 ms; sin.                          | T <sub>j</sub> = 175 °C   | 265      | А     |
| Module                                                                   |                                                       |                           |          |       |
| I <sub>t(RMS)</sub>                                                      |                                                       |                           | 200      | А     |
| T <sub>vj</sub>                                                          |                                                       |                           | -40 +175 | °C    |
| T <sub>stg</sub>                                                         |                                                       |                           | -40 +125 | °C    |
| V <sub>isol</sub>                                                        | AC, 1 min.                                            |                           | 4000     | V     |

| Characteristics T <sub>c</sub> =      |                                                  | 25 °C, unless otherwise specified          |      |      |      |          |
|---------------------------------------|--------------------------------------------------|--------------------------------------------|------|------|------|----------|
| Symbol                                | Conditions                                       |                                            | min. | typ. | max. | Units    |
| IGBT                                  |                                                  |                                            | _    |      |      |          |
| V <sub>GE(th)</sub>                   | $V_{GE} = V_{CE}, I_C = 2 \text{ mA}$            |                                            | 5    | 5,8  | 6,5  | V        |
| I <sub>CES</sub>                      | $V_{GE} = V, V_{CE} = V_{CES}$                   | T <sub>j</sub> = °C                        |      |      |      | mA       |
| V <sub>CE0</sub>                      |                                                  | T <sub>j</sub> = 25 °C                     |      | 0,8  | 0,9  | V        |
|                                       |                                                  | T <sub>j</sub> = 150 °C                    |      | 0,7  | 0,8  | V        |
| r <sub>CE</sub>                       | V <sub>GE</sub> = 15 V                           | T <sub>j</sub> = 25°C                      |      | 21   | 23   | mΩ       |
|                                       |                                                  | T <sub>j</sub> = 150°C                     |      | 31   | 33   | mΩ       |
| V <sub>CE(sat)</sub>                  | I <sub>Cnom</sub> = 50 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = 25°C <sub>chiplev.</sub>  |      | 1,85 | 2,05 | V        |
|                                       |                                                  | T <sub>j</sub> = 150°C <sub>chiplev.</sub> |      | 2,25 | 2,45 | V        |
| C <sub>ies</sub>                      |                                                  |                                            |      | 3,6  |      | nF       |
| C <sub>oes</sub>                      | $V_{CE}$ = 25, $V_{GE}$ = 0 V                    | f = 1 MHz                                  |      | 0,2  |      | nF       |
| C <sub>res</sub>                      |                                                  |                                            |      | 0,18 |      | nF       |
| Q <sub>G</sub>                        | -8V / +15V                                       |                                            |      | 280  |      | nC       |
| R <sub>Gint</sub>                     | T <sub>j</sub> = 25 °C                           |                                            |      | 4    |      | Ω        |
| t <sub>d(on)</sub>                    |                                                  |                                            |      |      |      | ns       |
| t <sub>r</sub>                        | R <sub>Gon</sub> =                               | $V_{\rm CC} = 600V$                        |      |      |      | ns       |
| E <sub>on</sub>                       | D -                                              | I <sub>Cnom</sub> = 50A                    |      | 5,5  |      | mJ       |
| t <sub>d(off)</sub><br>t <sub>f</sub> | R <sub>Goff</sub> =                              | T <sub>j</sub> = °C                        |      |      |      | ns<br>ns |
| e<br>E <sub>off</sub>                 |                                                  |                                            |      | 5,5  |      | mJ       |
| R <sub>th(j-c)</sub>                  | per IGBT                                         | 1                                          |      |      | 0,53 | K/W      |



## SKM 50GB12T4



SEMITRANS<sup>®</sup> 2

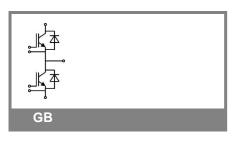
## **IGBT4** Modules

### SKM 50GB12T4

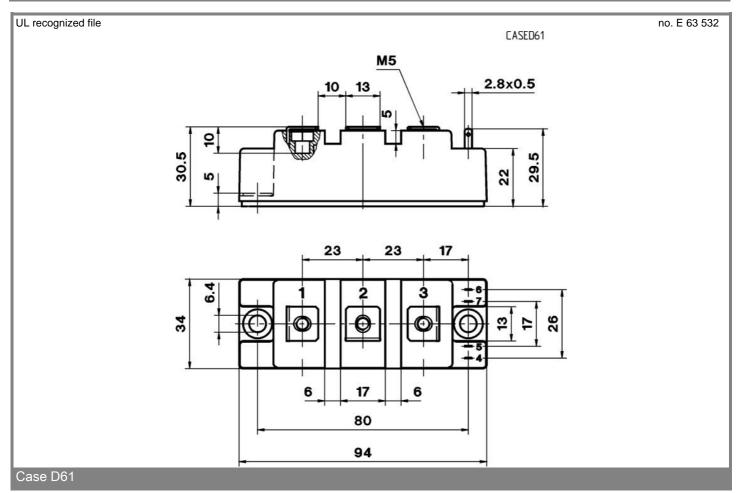
Target Data

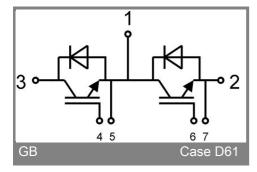
### Features

- IGBT4 = 4. Generation (Trench) IGBT
- V<sub>CEsat</sub> with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I<sub>CNOM</sub>
  Soft switching 4. Generation CAL
- Soft switching 4. Generation CAL diode (CALI4)


### **Typical Applications**

- AC inverter drives
- UPS
- Electronic welders at f<sub>sw</sub> up to 20 kHz


| Characte             | ristics                                    |                                   |      |      |      |       |
|----------------------|--------------------------------------------|-----------------------------------|------|------|------|-------|
| Symbol               | Conditions                                 |                                   | min. | typ. | max. | Units |
| Inverse D            |                                            |                                   |      |      |      |       |
| $V_F = V_{EC}$       | $I_{Fnom}$ = 50 A; $V_{GE}$ = 0 V          |                                   |      | 2,25 | 2,55 | V     |
|                      |                                            | $T_j = 150 \ ^\circ C_{chiplev.}$ |      | 2,2  | 2,5  | V     |
| V <sub>F0</sub>      |                                            | T <sub>j</sub> = 25 °C            |      | 1,3  | 1,5  | V     |
|                      |                                            | T <sub>j</sub> = 150 °C           |      | 0,9  | 1,1  | V     |
| r <sub>F</sub>       |                                            | T <sub>j</sub> = 25 °C            |      | 19   | 21   | mΩ    |
|                      |                                            | T <sub>j</sub> = 150 °C           |      | 26   | 28   | mΩ    |
| I <sub>RRM</sub>     | I <sub>Fnom</sub> = 50 A                   | T <sub>j</sub> = 150 °C           |      |      |      | А     |
| Q <sub>rr</sub>      |                                            |                                   |      |      |      | μC    |
| E <sub>rr</sub>      |                                            |                                   |      | 3,8  |      | mJ    |
| R <sub>th(j-c)</sub> | per diode                                  |                                   |      |      | 0,84 | K/W   |
| Freewhee             | eling Diode                                |                                   |      |      |      | •     |
| $V_F = V_{EC}$       | I <sub>Fnom</sub> = A; V <sub>GE</sub> = V | $T_j = °C_{chiplev.}$             |      |      |      | V     |
| V <sub>F0</sub>      |                                            | T <sub>j</sub> = °C               |      |      |      | V     |
| r <sub>F</sub>       |                                            | $T_j = °C$<br>$T_j = °C$          |      |      |      | V     |
| I <sub>RRM</sub>     | I <sub>Fnom</sub> = A                      | T <sub>j</sub> = °C               |      |      |      | А     |
| Q <sub>rr</sub>      |                                            | -                                 |      |      |      | μC    |
| E <sub>rr</sub>      |                                            |                                   |      |      |      | mJ    |
|                      | per diode                                  |                                   |      |      |      | K/W   |
| Module               |                                            |                                   |      |      |      |       |
| L <sub>CE</sub>      |                                            |                                   |      | 20   | 30   | nH    |
| R <sub>CC'+EE'</sub> | res., terminal-chip                        | T <sub>case</sub> = 25 °C         |      |      | 0,75 | mΩ    |
|                      |                                            | T <sub>case</sub> = 125 °C        |      |      | 1    | mΩ    |
| R <sub>th(c-s)</sub> | per module                                 |                                   |      |      | 0,05 | K/W   |
| M <sub>s</sub>       | to heat sink M6                            |                                   | 3    |      | 5    | Nm    |
| M <sub>t</sub>       | to terminals M5                            |                                   | 2,5  |      | 5    | Nm    |
| w                    |                                            |                                   |      |      | 160  | g     |


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.



# SKM 50GB12T4



