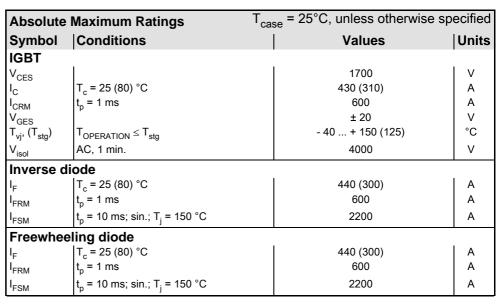
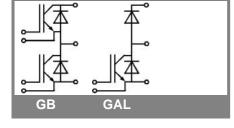
SKM 400GB176D ...

Trench IGBT Modules

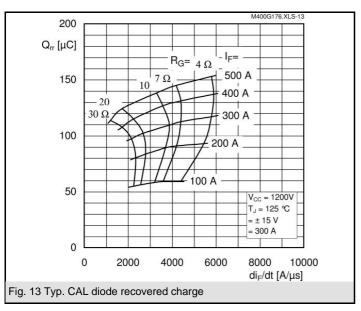
SKM 400GB176D SKM 400GAL176D

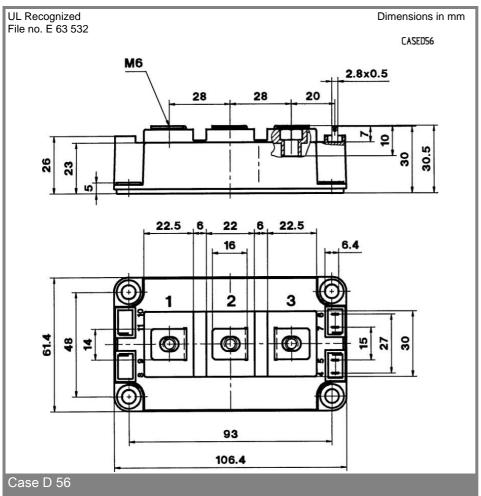

Preliminary Data

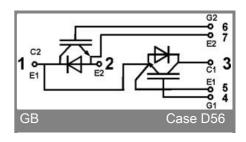
Features

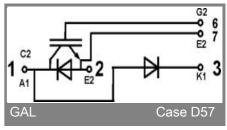

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature
- High short circuit capability, self limiting to 6 x I_C

Typical Applications


- AC inverter drives
- mains 575 750 V AC
- Public transport (auxiliary syst.)
- Wind power




Characteristics		T _{case} = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT	•	•			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$	5,2	5,8	6,4	V
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25 (125) °C$		0,15	0,45	mA
$V_{CE(TO)}$	T _i = 25 (125) °C		1 (0,9)	1,2 (1,1)	V
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		3,3 (5,2)	4,2 (6)	mΩ
V _{CE(sat)}	I_{Cnom} = 300 A, V_{GE} = 15 V, chip level		2 (2,45)	2,4 (2,9)	V
C _{ies}	under following conditions		13,2		nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,6		nF _
C _{res}			0,5	00	nF
L _{CE}				20	nH
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ
t _{d(on)}	V _{CC} = 1200 V, I _{Cnom} = 300 A		330		ns
t _r	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 °C$		55		ns
t _{d(off)}	V _{GE} ± 15 V		880		ns
t _f			145		ns
E _{on} (E _{off})			170 (118)		mJ
Inverse o		•			•
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125)$		1,7 (1,8)	1,9 (2)	V
$V_{(TO)}$	T _j = 25 (125) °C		1,2 (0,9)	1,4 (1,1)	V
r _T	T _j = 25 (125) °C		1,7 (3)	1,7 (3)	mΩ
I _{RRM}	$I_{Fnom} = 300 \text{ A}; T_j = 125 \text{ () } ^{\circ}\text{C}$		418		Α
Q_{rr}	di/dt = 5800 A/μs		117		μC
E _{rr}	V _{GE} = 0 V		78		mJ
FWD					
$V_F = V_{EC}$	$I_F = 300 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		1,7 (1,8)	1,9 (2)	V
$V_{(TO)}$	$T_j = 25 (125) ^{\circ}C$		1,2 (0,9)	1,4 (1,1)	V
r _T	T _j = 25 (125) °C		1,7 (3)	1,7 (3)	mΩ
I _{RRM}	I _F = 300 A; T _j = 125 () °C di/dt = 5800 A/µs		418 117		A
Q _{rr}					μC
E _{rr}	V _{GE} = 0 V		78		mJ
	characteristics	i		0.075	1.000
R _{th(j-c)}	per IGBT			0,075	K/W
R _{th(j-c)D}	per Inverse Diode per FWD			0,125 0,125	K/W K/W
R _{th(j-c)FD}					
R _{th(c-s)}	per module			0,038	K/W
Mechanio	•	1 6		-	Lau
M _s	to heatsink M6	3		5	Nm
M _t	to terminals M6	2,5		5	Nm
W				325	g



SKM 400GB176D ...

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.