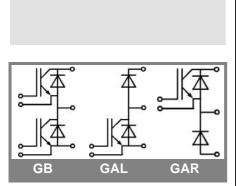
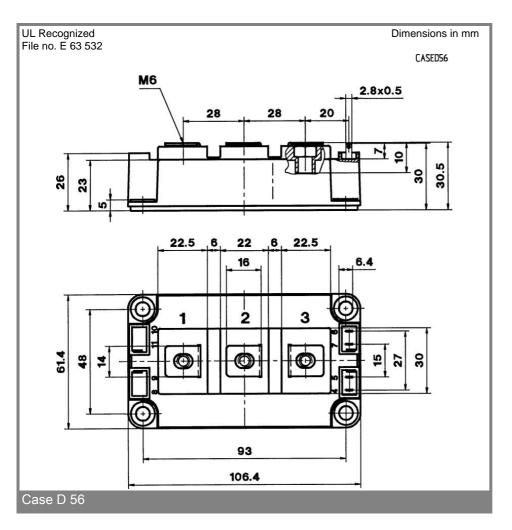
SKM 400GB125D

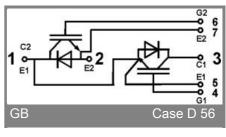
Ultra Fast IGBT Modules

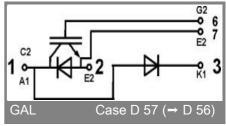

SKM 400GB125D **SKM 400GAL125D SKM 400GAR125D**

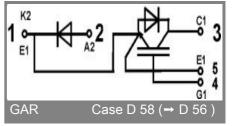
Features

- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DBC Direct Copper Bonding** Technology
- · Large clearance (13 mm) and creepage distances (20 mm)


Typical Applications


- Switched mode power supplies at $f_{sw} > 20kHz$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz




Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
I _C	T _c = 25 (80) °C	400 (300)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	600	Α				
V_{GES}		± 20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F	T _c = 25 (80) °C	390 (260)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	600	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	2900	Α				
Freewheeling diode							
I _F	T _c = 25 (80) °C	390 (260)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	600	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	2900	Α				

Characteristics		T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) °C$		0,15	0,45	mA		
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1,4 (1,7)		V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C				mΩ		
V _{CE(sat)}	I_{Cnom} = 300 A, V_{GE} = 15 V, chip level		3,3	3,85	V		
C _{ies}	under following conditions		22	30	nF		
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		3,3	4	nF		
C _{res}			1,2	1,6	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 300 A		70 50		ns		
t _r	$R_{Gon} = R_{Goff} = 2 \Omega$, $T_j = 125 °C$		50		ns		
t _{d(off)}	V _{GE} = ± 15 V		500 32		ns		
t _f					ns		
E _{on} (E _{off})			17 (18)		mJ		
Inverse d	•	i					
$V_F = V_{EC}$	I_{Fnom} = 300 A; V_{GE} = 0 V; T_j = 25 (125) °C		2 (1,8)	2,5	V		
$V_{(TO)}$	T _i = 25 (125) °C		1,1	1,2	V		
r _T	$T_{j} = 25 (125) ^{\circ}C$		3	3,3	$m\Omega$		
I _{RRM}	I_{Fnom} = 300 A; T_j = 125 () °C		85 (140)		Α		
Q_{rr}	di/dt = A/μs		13 (40)		μC		
E _{rr}	V _{GE} = 0 V				mJ		
FWD							
$V_F = V_{EC}$	$I_F = 300 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V		
$V_{(TO)}$	$T_j = 25 (125) ^{\circ}C$				V		
r _T	$T_j = 25 (125) ^{\circ}C$				mΩ		
I _{RRM}	$I_F = 300 \text{ A}; T_j = 125 \text{ () } ^{\circ}\text{C}$				A		
Q _{rr}	di/dt = A/µs				μC		
E _{rr}	V _{GE} = 0 V				mJ		
Thermal characteristics							
R _{th(j-c)}	per IGBT			0,05	K/W		
R _{th(j-c)D}	per Inverse Diode			0,125	K/W		
R _{th(j-c)FD}	per FWD			0,125	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanical data							
M _s	to heatsink M6	3		5	Nm		
M_t	to terminals M6	2,5		5	Nm		
w				325	g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

4 20-09-2005 RAA © by SEMIKRON