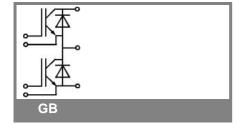
SKM 300GB124D

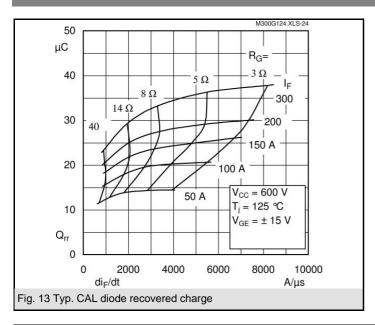
Low Loss IGBT Modules

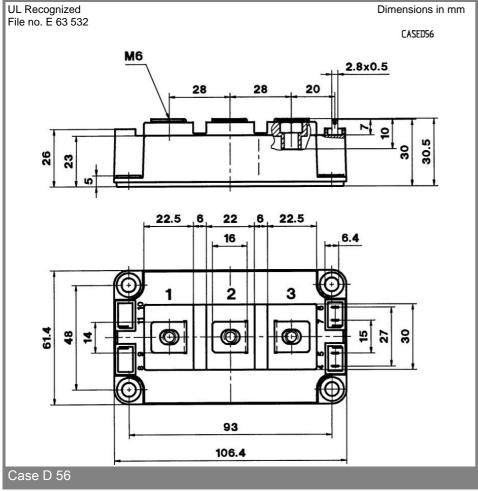
SKM 300GB124D

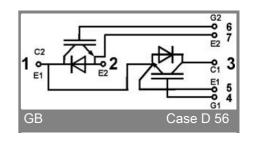
Features


- MOS input (voltage controlled)
- N channel, homgeneous Si-structure (NPT - Non punch-through IGBT)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications


- Switching (not for linear use)
- AC inverter drives
- UPS


Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	T _c = 25 (65) °C	380 (300)	Α					
I _{CRM}	t _p = 1 ms	400	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	260 (180)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	400	Α					
I_{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	2200	Α					


					1		
Characteristics		T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT		•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,2	0,6	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1,1 (1,1)	, ,	V		
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		5 (6,5)	6 (8)	mΩ		
V _{CE(sat)}	I_{Cnom} = 200 A, V_{GE} = 15 V, chip level		2,1 (2,4)	2,45 (2,85)	V		
C _{ies}	under following conditions		13		nF		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V, f} = 1 \text{ MHz}$		2		nF		
C _{res}			1	1,3	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 200 A		90		ns		
t _r	$R_{Gon} = R_{Goff} = 6 \Omega, T_j = 125 °C$		60		ns		
t _{d(off)}	V _{GE} = ± 15 V		600		ns		
t _f			55		ns		
E _{on} (E _{off})			29 (28)		mJ		
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V; T_j = 25 (125)		2 (1,8)	2,5	V		
$V_{(TO)}$	T _i = 125 () °C		1,1	1,2	V		
r _T	T _j = 125 () °C			5,5	mΩ		
I _{RRM}	I _{Fnom} = 200 A; T _j = 125 () °C		120		Α		
Q_{rr}	di/dt = A/µs		25		μC		
E _{rr}	V _{GE} = V				mJ		
Thermal characteristics							
R _{th(j-c)}	per IGBT			0,075	K/W		
R _{th(j-c)D}	per Inverse Diode			0,18	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanical data							
M_s	to heatsink M6	3		5	Nm		
M_t	to terminals M6				Nm		
w				325	g		

SKM 300GB124D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.