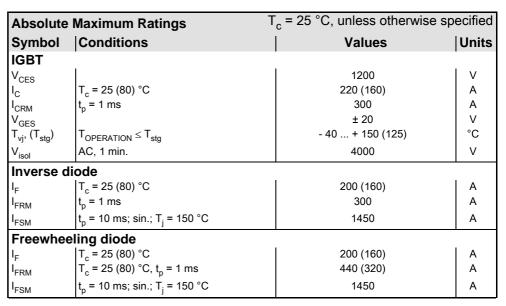
SKM 195GB126DN

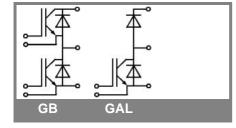
SEMITRANSTM 2N

Trench IGBT Module

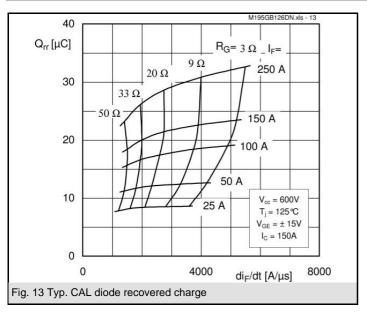
SKM 195GB126DN SKM 195GAL126DN

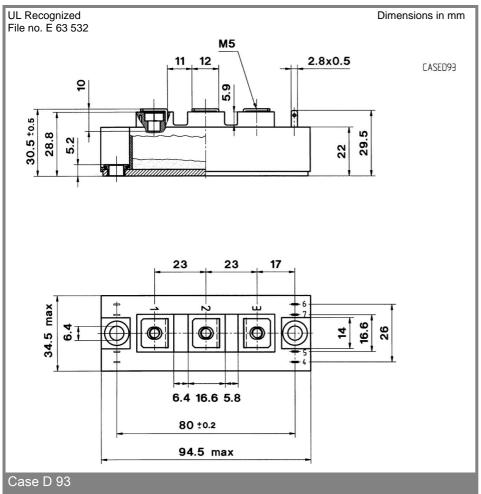

Preliminary Data

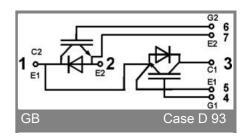
Features

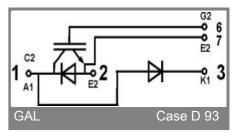

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications


- AC inverter drives
- UPS
- · Electonic welders




Characteristics		T _c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	5	5,8	6,5	V
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C		0,2	0,6	mA
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,15	V
r _{CE}	$V_{GE} = 15 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		4,7 (7,3)	6,7	mΩ
V _{CE(sat)}	I _C = 150 A, V _{GE} = 15 V, chip level		1,7 (2)	2,15	V
C _{ies}	under following conditions V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		10,5		nF nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, I = 1 MH2		0,9 0,8		nF
C _{res} L _{CE}			0,0	25	nH
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,75 (1)	20	mΩ
t _{d(on)}	V _{CC} = 600 V, I _C = 150 A		300		ns
t _r	$R_{Gon} = R_{Goff} = 5 \Omega$, $T_i = 125 °C$		40		ns
t _{d(off)}	V _{GE} = ± 15 V		560		ns
t _f			100		ns
$E_{on} \left(E_{off} \right)$			16 (21)		mJ
Inverse diode					
$V_F = V_{EC}$	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C}$		1,6 (1,6)	1,8 (1,8)	V
$V_{(TO)}$	$T_j = 25 (125) ^{\circ}C$		1 (0,8)	1,1 (0,9)	V
r _T	$T_j = 25 (125) ^{\circ}C$		4 (5,3)	4,7 (6)	mΩ
I _{RRM}	I _F = 150 A, T _j = 125 () °C di/dt = 2000 A/µs		200 33		A
Q _{rr}			33 14,5		μC
E _{rr}	V _{GE} = 0 V		14,5		mJ
FWD V _F = V _{EC}	- 150 A: \/ - 0 \/ T - 25 (125) °C	i	1,6 (1,6)	1,8 (1,8)	Ιv
V _F - V _{EC}	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$ $T_i = 25 (125) ^{\circ}\text{C}$		1,0 (1,0)	1,0 (1,0)	V
r _T	$T_i = 25 (125) ^{\circ} C$		4 (5,3)	4,7 (6)	mΩ
I _{RRM}	I _F = 150 A; T _i = 125 () °C		200	, (-,	Α
Q _{rr}	di/dt = 2000 A/µs		33		μC
E _{rr}	V _{GE} = 0 V		14,5		mJ
Thermal	characteristics	•			-
R _{th(j-c)}	per IGBT			0,16	K/W
R _{th(j-c)D}	per Inverse Diode			0,32	K/W
$R_{th(j-c)FD}$	per FWD			0,32	K/W
R _{th(c-s)}	per module			0,05	K/W
Mechanical data					
M _s	to heatsink M6	3		5	Nm
M _t	to terminals M5	2,5		5	Nm
W				160	g



SKM 195GB126DN

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.