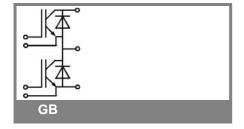
SKM 150GB124D

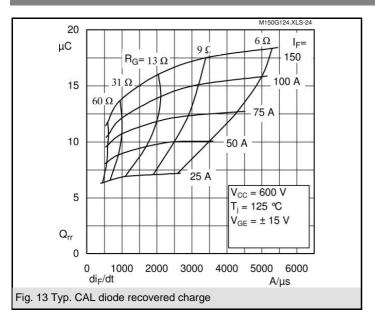
Low Loss IGBT Modules

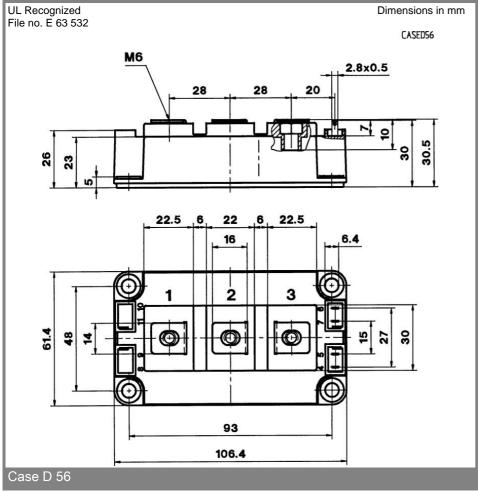
SKM 150GB124D

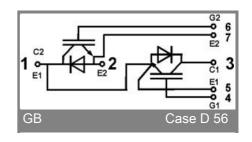
Features


- MOS input (voltage controlled)
- N channel, homogeneous Silicon structure (NPT-IGBT)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications


- Switching (not for linear use)
- AC inverter drieves
- UPS


Absolute Maximum Ratings		Γ _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V _{CES} I _C	T _c = 25 (65) °C	190 (150)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	200	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	$T_c = 25 (80) ^{\circ}C$	150 (100)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	200	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1100	Α					


Characteristics		T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT		•			•			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$	4,5	5,5	6,5	V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) °C$		0,1	0,3	mA			
V _{CE(TO)}	T _j = 25 (125) °C		1,1 (1,1)	, ,	V			
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		10 (13)	12 (16)	mΩ			
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V, chip level		2,1 (2,4)	2,45 (2,85)	V			
C _{ies}	under following conditions		6,5	8,5	nF			
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		1	1,5	nF			
C _{res}			0,5	0,6	nF			
L _{CE}				20	nH			
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ			
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 100 A		50		ns			
t _r	$R_{Gon} = R_{Goff} = 8 \Omega, T_j = 125 °C$		35		ns			
t _{d(off)}	V _{GE} = ± 15 V		420		ns			
t _f			60		ns			
E _{on} (E _{off})			12 (13)		mJ			
Inverse diode								
$V_F = V_{EC}$	I_{Fnom} = 100 A; V_{GE} = 0 V; T_j = 25 (125)		2 (1,8)	2,5	V			
V _(TO)	T _i = 125 () °C		1,1	1,2	V			
r _T	T _j = 125 () °C			11	mΩ			
I _{RRM}	I _{Fnom} = 100 A; T _j = 125 () °C		58		Α			
Q_{rr}	di/dt = A/µs		12		μC			
E _{rr}	V _{GE} = V				mJ			
Thermal c	Thermal characteristics							
R _{th(j-c)}	per IGBT			0,15	K/W			
R _{th(j-c)D}	per Inverse Diode			0,25	K/W			
R _{th(c-s)}	per module			0,038	K/W			
Mechanical data								
M_s	to heatsink M6	3		5	Nm			
M _t	to terminals M6	2,5		5	Nm			
w				325	g			

SKM 150GB124D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.