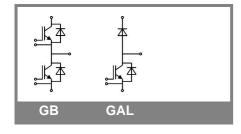


SEMITRANS[®] 2

IGBT Modules


SKM 145GB123D SKM 145GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications*

- Switching (not for linear use)
- AC inverter drives

Absolute	Maximum Ratings	T _c =	25 °C, unless otherwise	specified
Symbol	Conditions		Values	Units
IGBT				
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	145	Α
		T _{case} = 80 °C	110	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		200	Α
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse [Diode			
I_{F}	T _j = 150 °C	T_{case} = 25 °C	130	Α
		T _{case} = 80 °C	90	Α
I_{FRM}	I _{FRM} =2xI _{Fnom}		200	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	900	Α
Freewhe	eling Diode			•
I_{F}	T _j = 150 °C	T_{case} = 25 °C	170	Α
		T_{case} = 80 °C	115	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	1440	А
Module			•	
$I_{t(RMS)}$			200	Α
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

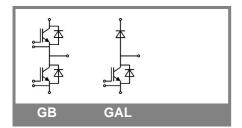
Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	14	mΩ
		T _j = 125°C		15	19	mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				6,5	8,5	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1	1,5	nF
C _{res}				0,5	0,6	nF
Q_G	V _{GE} = -8V - +20V			1000		nC
R _{Gint}	$T_j = ^{\circ}C$			5		Ω
t _{d(on)}				160	320	ns
t _r	R_{Gon} = 6,8 Ω	$V_{CC} = 600V$		80	160	ns
E _{on}		I _C = 100A		16		mJ
t _{d(off)}	$R_{Goff} = 6.8 \Omega$	T _j = 125 °C		400	520	ns
t _f		$V_{GE} = -15V$		70	100	ns
E _{off}				12		mJ
R _{th(j-c)}	per IGBT				0,15	K/W

IGBT Modules

SKM 145GB123D SKM 145GAL123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)

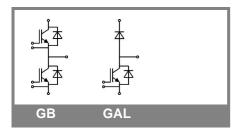

Typical Applications*

- Switching (not for linear use)
- AC inverter drives

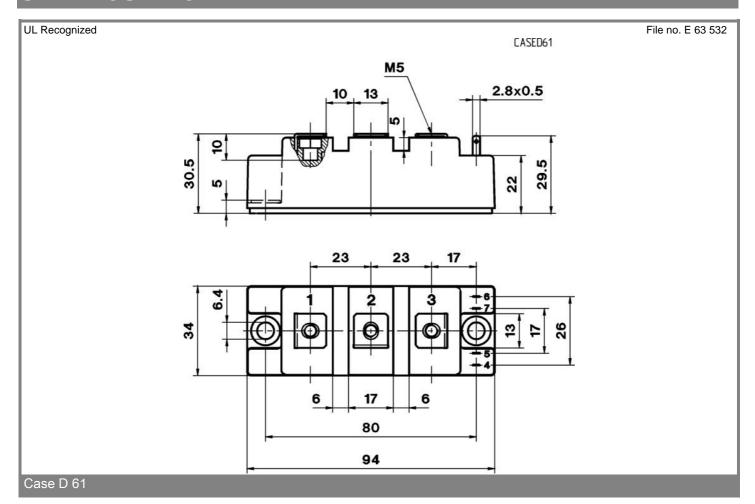
Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	$I_{Fnom} = 100 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,4	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		9	11	mΩ
		T _j = 125 °C				mΩ
I _{RRM}	I _F = 100 A	T _j = 25 °C		35		A
Q _{rr}	di/dt = 1000 A/µs			5		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
R _{th(j-c)D}	per diode				0,36	K/W
	eling Diode					
$V_F = V_{EC}$	$I_{Fnom} = 150 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,4	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		9	11	V
		T _j = 125 °C				V
I _{RRM}	I _F = 150 A	T _j = 25 °C		55		A
Q _{rr}	.,,			8		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)FD}$	per diode				0,3	K/W
Module						
L _{CE}					30	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module				0,05	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M5		2,5		5	Nm
w					160	g

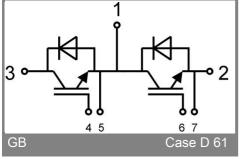
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

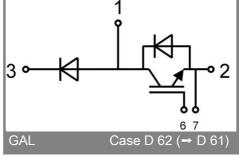
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.


IGBT Modules

SKM 145GB123D SKM 145GAL123D


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications*


- Switching (not for linear use)
- AC inverter drives

Z _{th}	lo and the annual	Walter	111-14-
Symbol	Conditions	Values	Units
Z R _i	1		•
R _i	i = 1	100	mk/W
R_i	i = 2	38	mk/W
R_i	i = 3	10	mk/W
R_i	i = 4	2	mk/W
tau _i	i = 1	0,03	S
tau _i	i = 2	0,0287	S
tau _i	i = 3	0,0012	s
tau _i	i = 4	0,0002	s
Z _{th(j-c)D}			·
R _i	i = 1	240	mk/W
R_i	i = 2	95	mk/W
R _i	i = 3	22	mk/W
R _i	i = 4	3	mk/W
tau _i	i = 1	0,054	s
tau _i	i = 2	0,0113	s
tau _i	i = 3	0,0012	s
tau _i	i = 4	0,005	s

6 25-04-2007 SEI © by SEMIKRON