SKM 100GB128DN

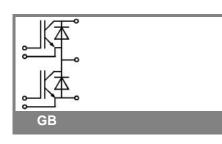
SEMITRANSTM 2N

SPT IGBT Module

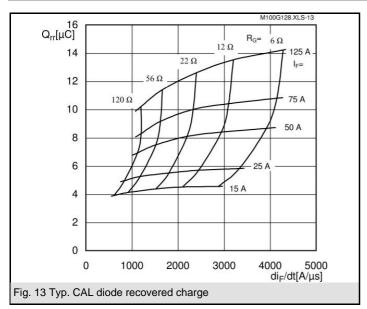
SKM 100GB128DN

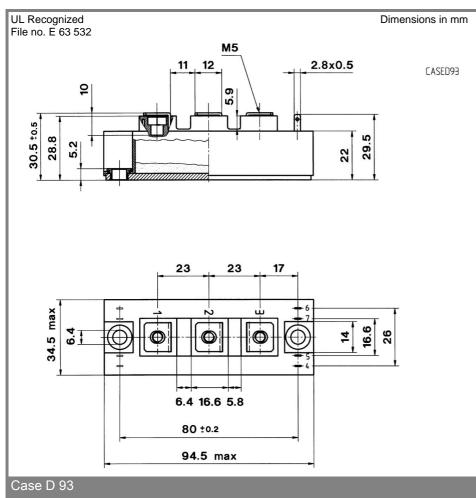
Preliminary Data

Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications


- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz


Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V _{CES}		1200	V					
I _C	T _c = 25 (80) °C	145 (105)	А					
I _{CRM}	T _c = 25 (80) °C, t _p = 1 ms	290 (210)	А					
V _{GES}		±20	V					
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F = - I _C	T _c = 25 (80) °C	95 (65)	А					
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	290 (210)	А					
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	720	А					

Characte	ristics	T _c = 25 °C,	$T_c = 25 \text{ °C}$, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_{C} = 3 \text{ mA}$	4,5	5,5	6,45	V		
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) \ ^{\circ}C$		0,1	0,3	mA		
V _{CE(TO)}	T _j = 25 (125) °C			1,15 (1,05)	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		13 (16)	16 (20)	mΩ		
V _{CE(sat)}	I_{C} = 75 A, V_{GE} = 15 V, chip level		. ,	2,35 (2,55)	V		
C _{ies}	under following conditions		6,2		nF		
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,74		nF		
C _{res}			0,71		nF		
L _{CE}				25	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,75 (1)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _C = 75 A		150		ns		
tr	R _{Gon} = R _{Goff} = 12 Ω, T _j = 125 °C		45		ns		
t _{d(off)}	$V_{GE} = \pm 15 V$		560		ns		
t _f			50		ns		
$E_{on} \left(E_{off} \right)$			8,5 (7,5)		mJ		
Inverse diode							
$V_F = V_{EC}$	I _F = 75 A; V _{GE} = 0 V; T _j = 25 (125) °C		2 (1,8)	2,5	V		
V _(TO)	T _j = 25 (125) °C		1,05	1,3	V		
r _T	T _j = 25 (125) °C		13	16	mΩ		
I _{RRM}	I _F = 75 A; T _j = 125 () °C		105		А		
Q _{rr}	di/dt = 3100 A/µs		10,5		μC		
Err	$V_{GE} = 0 V$		3,4		mJ		
Thermal characteristics							
R _{th(j-c)}	per IGBT			0,21	K/W		
R _{th(j-c)D}	per Inverse Diode			0,5	K/W		
R _{th(c-s)}	per module			0,05	K/W		
Mechanical data							
M _s	to heatsink M6	3		5	Nm		
M _t	to terminals M5	2,5		5	Nm		
w				160	g		

SKM 100GB128DN

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.