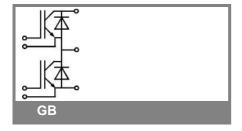
SKM 100GB124D

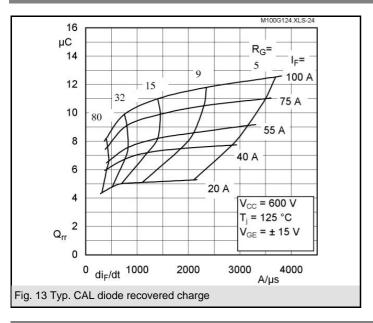
Low Loss IGBT Module

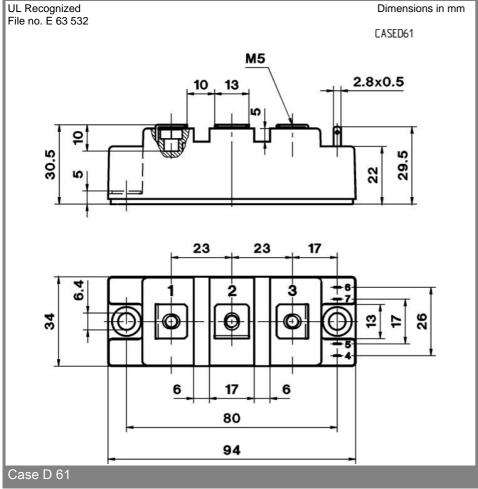
SKM 100GB124D

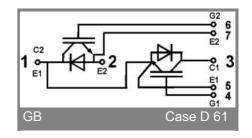
Features


- MOS input (voltage controlled)
- N channel, homogeneous Silicon structure (NPT- Non punch-through IGBT)
- Low loss high density chip
- Low tail current
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications


• Switching (not for linear use)


Absolute Maximum Ratings		T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V _{CES} I _C	T _c = 25 (85) °C	150 (100)	Α					
I _{CRM}	t _p = 1 ms	150	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	$T_c = 25 (80) ^{\circ}C$	95 (65)	Α					
I _{FRM}	t _p = 1 ms	150	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	720	Α					


Characteristics T _c = 25 ° C, unless otherwise spec							
		0					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,1	0,3	mA		
V _{CE(TO)}	T _j = 25 (125) °C		,	1,25 (1,25)	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		13,3 (17,3)	16 (21,3)	mΩ		
V _{CE(sat)}	I_{Cnom} = 75 A, V_{GE} = 15 V, chip level			2,45 (2,85)	V		
C _{ies}	under following conditions		5	6,6	nF		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		0,72	0,9	nF		
C _{res}			0,38	0,5	nF		
L _{CE}				30	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,75 (1)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 75 A		80		ns		
t _r	$R_{Gon} = R_{Goff} = 10 \Omega, T_j = 125 °C$		45		ns		
$t_{d(off)}$	V _{GE} = ± 15 V		430		ns		
t _f			55		ns		
$E_{on} (E_{off})$			11 (9)		mJ		
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V; T_{i} = 25 (125) °C		2 (1,8)	2,5	V		
V _(TO)	T _j = 125 () °C		1,1	1,2	V		
r _T	T _j = 125 () °C			15	mΩ		
I _{RRM}	I _{Fnom} = 75 A; T _j = 125 () °C		42		Α		
Q_{rr}	di/dt = 800 A/μs		9,1		μC		
E _{rr}	V _{GE} = V				mJ		
Thermal characteristics							
R _{th(i-c)}	per IGBT			0,18	K/W		
R _{th(j-c)D}	per Inverse Diode			0,5	K/W		
R _{th(c-s)}	per module			0,05	K/W		
Mechanical data							
M_s	to heatsink M6	3		5	Nm		
Mt	to terminals M5	2,5		5	Nm		
w				160	g		

SKM 100GB124D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.