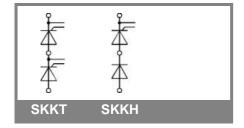
SKKT 430, SKKH 430

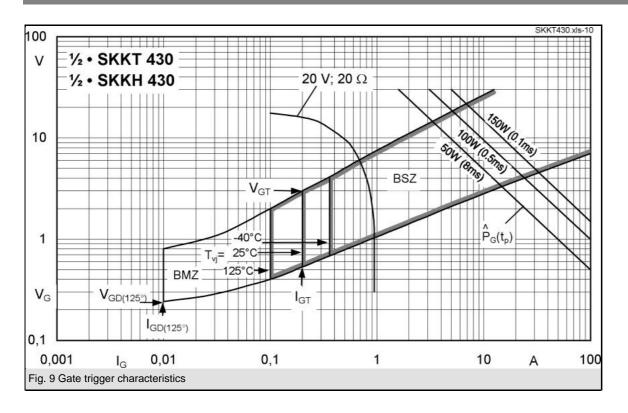
SEMIPACK[®] 5

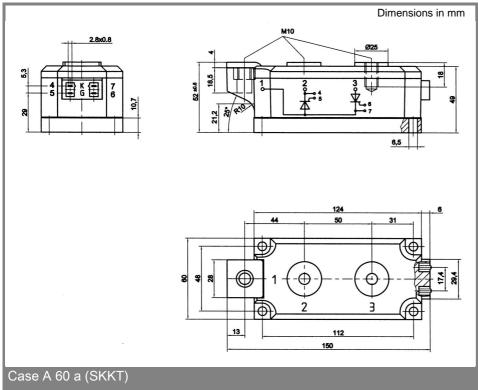
Thyristor / Diode Modules

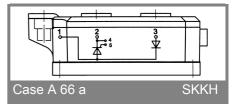
SKKT 430 SKKH 430

Features


- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- UL recognized, file no. E 63 532


Typical Applications


- · AC motor softstarters
- Input converters for AC inverter drives
- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated


V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 700 A (maximum value for continuous operation)		
V	V	I _{TAV} = 430 A (sin. 180; T _c = 86 °C)		
1700	1600	SKKT 430/16E	SKKH 430/16E	
2000	2000	SKKT 430/20EH4	SKKH 430/20EH4	
2200	2200	SKKT 430/22EH4	SKKH 430/22EH4	

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	440 (305)	Α
I_D	P16/300F; T _a = 35 °C; B6	820	Α
I _{RMS}	P16/300F; T _a = 35 °C; W3C	3 * 630	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	15000	Α
	T _{vi} = 125 °C; 10 ms	13000	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	1125000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	845000	A²s
V_{T}	$T_{vj} = 25 ^{\circ}\text{C}; I_{T} = 1700 \text{A}$	max. 1,65	V
$V_{T(TO)}$	$T_{vj} = 125 ^{\circ}\text{C}$	max. 0,95	V
r_T	T _{vj} = 125 °C	max. 0,35	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 150	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 125 °C	max. 200	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t_q	$T_{vj}^{-3} = 125 ^{\circ}\text{C}$,	100 200	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 2000	mA
V _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{ d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,065 / 0,032	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,068 / 0,034	K/W
R _{th(j-c)}	rec. 120; per thyristors / per module	0,073 / 0,036	K/W
R _{th(c-s)}	per thyristor / per module	0,02 / 0,01	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 125	°C
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min. for SKKH4	4800 / 4000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	12 ± 15 % ²⁾	Nm
а		5 * 9,81	m/s²
m	approx.	1420	g
Case	SKKT	A 60 a	
	SKKH	A 66 a	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.