SKKT 213, SKKH 213

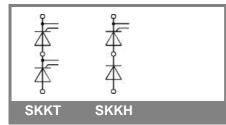
SEMIPACK[®] 3

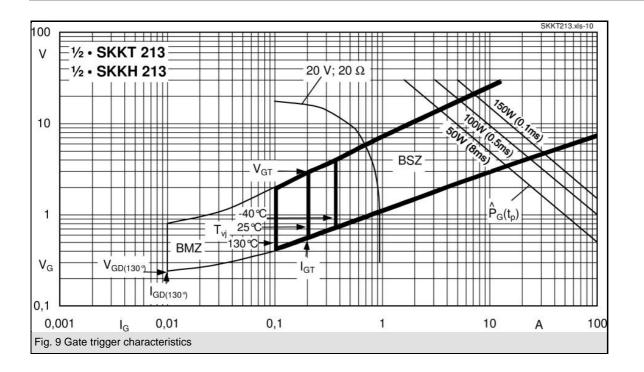
Thyristor / Diode Modules

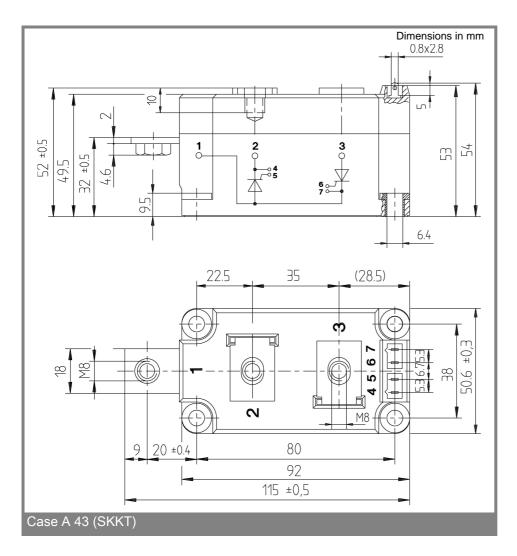
SKKH 213

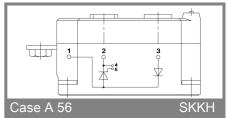
SKKT 213

Features


- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Chip soldered on direct copper bonded Al₂O₃ ceramic
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532


Typical Applications


- DC motor control (e. g. for machine tools)
- AC motor starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated
- 3) V_{isol} 1 s / 1 min = 4800 / 4000 V


V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 370 A (maximum value for continuous operation)		
V	V	I _{TAV} = 213 A (sin. 180; T _c = 90 °C)		
900	800	SKKT 213/08E		
1300	1200	SKKT 213/12E	SKKH 213/12E	
1500	1400	SKKT 213/14E	SKKH 213/14E	
1700	1600	SKKT 213/16E	SKKH 213/16E	
1900	1800	SKKT 213/18E	SKKH 213/18E	

Symbol	Conditions	Values	Units
ITAV	sin. 180; T _c = 85 (100) °C;	230 (173)	А
I _D	P16/200F; T _a = 35 °C; B2 / B6	354 / 456	А
I _{RMS}	P16/200F; T _a = 35 °C; W1 / W3	425 / 3 * 360	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	8500	А
	T _{vi} = 130 °C; 10 ms	7500	A
i²t	T _{vj} = 25 °C; 8,3 10 ms	361000	A²s
1	T _{vj} = 130 °C; 8,3 10 ms	281000	A²s
V _T	T _{vi} = 25 °C; I _T = 750 A	max. 1,9	V
V _{T(TO)}	T _{vi} = 130 °C	max. 0,95	V
r _T `´	T _{vj} = 130 °C	max. 1,3	mΩ
I _{DD} ; I _{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 50	mA
gd	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
gr	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 250	A/µs
(dv/dt) _{cr}	T _{vj} = 130 °C	max. 1000	V/µs
t _q	T _{vj} = 130 °C ,	50 150	μs
H	T _{vj} = 25 °C; typ. / max.	150 / 500	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 2000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 \text{ °C}; \text{ d.c.}$	min. 200	mA
V _{GD}	$T_{vj} = 130 \ ^{\circ}C; \ d.c.$	max. 0,25	V
I _{GD}	T _{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,11 / 0,055	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,115 / 0,057	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,125 / 0,0625	K/W
R _{th(c-s)}	per thyristor / per module	0,08 / 0,04	K/W
T _{vj}		- 40 + 130	°C
T _{stg}		- 40 + 130	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M _t	to terminals	9 ± 15 % ²⁾	Nm
а		5 * 9,81	m/s²
m	approx.	400	g
Case	SKKT	A 43	
	SKKH	A 56	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

01-03-2007 GIL

4