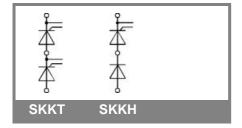
SKKT 162 H4, SKKH 162 H4

SEMIPACK[®] 2

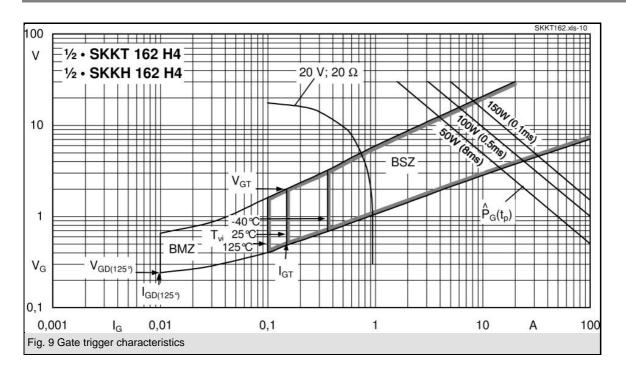
Thyristor / Diode Modules

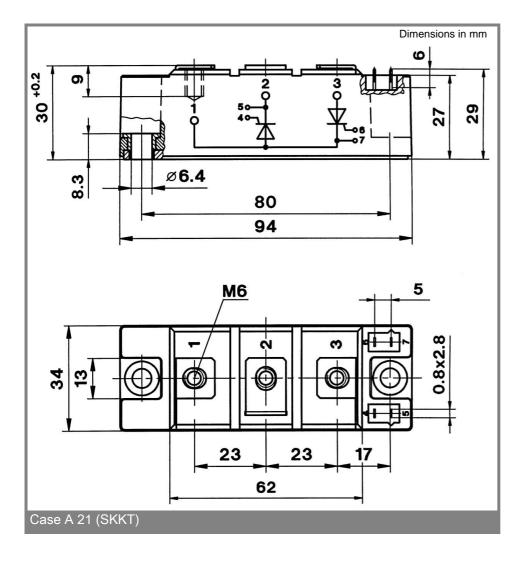
SKKH 162 H4 SKKT 162 H4

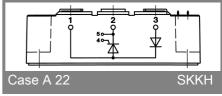
Features


- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63 532

Typical Applications


- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions


V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 250 A (maximum value for continuous operation)		
V	V	I _{TAV} = 162 A (sin.180; T _c = 77 °C)		
2100	2000	SKKT 162/20E H4	SKKH 162/20E H4	
2300	2200	SKKT 162/22E H4	SKKH 162/22E H4	


Symbol	Conditions	Values	Units
I_{TAV}	sin. 180; T _c = 85 (100) °C	143 (101)	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	5200	Α
	T _{vj} = 125 °C; 10 ms	4800	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	135000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	115000	A²s
V _T	T _{vj} = 25 °C; I _T = 500 A	max. 1,65	V
$V_{T(TO)}$	$T_{vj} = 125 ^{\circ}\text{C}$	max. 0,95	V
r_{T}	T _{vj} = 125 °C	max. 2	mΩ
I_{DD} ; I_{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 40	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 125 °C	max. 200	A/µs
(dv/dt) _{cr}	$T_{vj} = 125 ^{\circ}\text{C}$	max. 1000	V/µs
t _q	$T_{vj} = 125 ^{\circ}\text{C}$	50 150	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 400	mA
I_L	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 1000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 2	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,16 / 0,08	K/W
$R_{th(j-c)}$	sin. 180; per thyristor / per module	0,17 / 0,085	K/W
$R_{th(j-c)}$	rec. 120; per thyristor / per module	0,19 / 0,095	K/W
R _{th(c-s)}	per thyristor / per module	0,1 / 0,05	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	4800 / 4000	V~
M_s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	5 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	175	g
Case	SKKT	A 21	
	SKKH	A 22	

SKKT 162 H4, SKKH 162 H4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.