SKiiP 25AC126V1

MiniSKiiP[®] 2

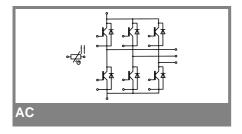
3-phase bridge inverter

SKiiP 25AC126V1

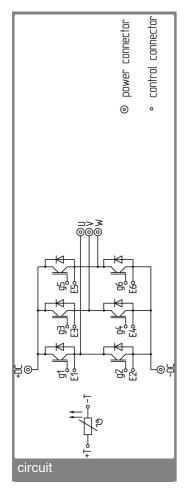
Features

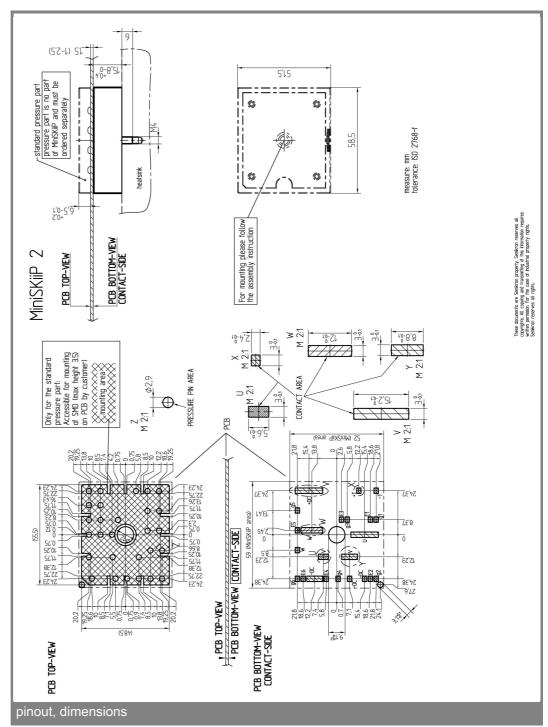
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 28 kVA
- Typical motor power 15 kW

Remarks


• V_{CEsat} , V_F = chip level value


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise s	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V_{CES}		1200	V					
I _C	T _s = 25 (70) °C	73 (55)	Α					
I _{CRM}	$t_p \le 1 \text{ ms}$	100	Α					
V_{GES}	·	± 20	V					
T_j		- 40 + 150	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C	62 (46)	Α					
I _{FRM}	$t_p \le 1 \text{ ms}$	100	Α					
T_j		- 40 + 150	°C					
I _{tRMS}	per power terminal (20 A / spring)	100	Α					
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	٧					

Character	istics T	s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat} V _{GE(th)} V _{CE(TO)} r _T C _{ies} C _{oes} C _{res} R _{th(j-s)}	$\begin{split} &I_{Cnom} = 50 \text{ A, } T_j = 25 \text{ (125) °C} \\ &V_{GE} = V_{CE}, I_C = 2 \text{ mA} \\ &T_j = 25 \text{ (125) °C} \\ &T_j = 25 \text{ (125) °C} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{GE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE} = 25 \text{ V, } V_{CE} = 0 \text{ V, } f = 1 \text{ MHz} \\ &V_{CE$	5	1,7 (2) 5,8 1 (0,9) 14 (22) 3,7 0,8 0,7 0,55	2,1 (2,4) 6,5 1,2 (1,1) 18 (26)	V V MΩ nF nF nF			
$\begin{aligned} & t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & E_{on} \\ & E_{off} \end{aligned}$	under following conditions V_{CC} = 600 V, V_{GE} = ± 15 V I_{Cnom} = 50 A, T_j = 125 °C R_{Gon} = R_{Goff} = 12 Ω inductive load		30 440 90 5,8 6,5		ns ns ns ns mJ mJ			
$\begin{aligned} & \textbf{Diode - In'} \\ & V_F = V_{EC} \\ & V_{(TO)} \\ & r_T \\ & R_{th(j-s)} \\ & I_{RRM} \\ & Q_{rr} \\ & E_{rr} \end{aligned}$	verter $ I_{Fnom} = 50 \text{ A, } T_j = 25 (125) \text{ °C}$ $T_j = 25 (125) \text{ °C}$ $T_j = 25 (125) \text{ °C}$ $T_j = 25 (125) \text{ °C}$ per diode $ I_{Fnom} = 50 \text{ A, } V_R = 600 \text{ V}$ $V_{GE} = 0 \text{ V, } T_j = 125 \text{ °C}$ $ I_{Finom} = 125 \text{ °C}$ $ I_{Finom} = 125 \text{ °C}$		1,6 (1,6) 1 (0,8) 12 (16) 1 71 11,5 5,1		V MΩ K/W A μC mJ			
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanic m M _s	al Data Mounting torque	2	65	2,5	g Nm			

SKiiP 25AC126V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.