SKiiP 13AC126V1

MiniSKiiP[®] 1

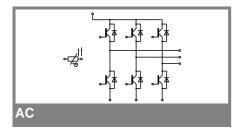
3-phase bridge inverter

SKiiP 13AC126V1

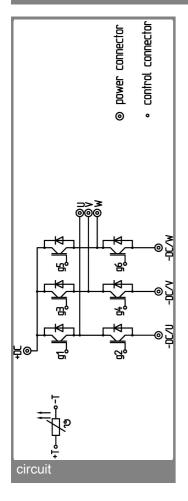
Features

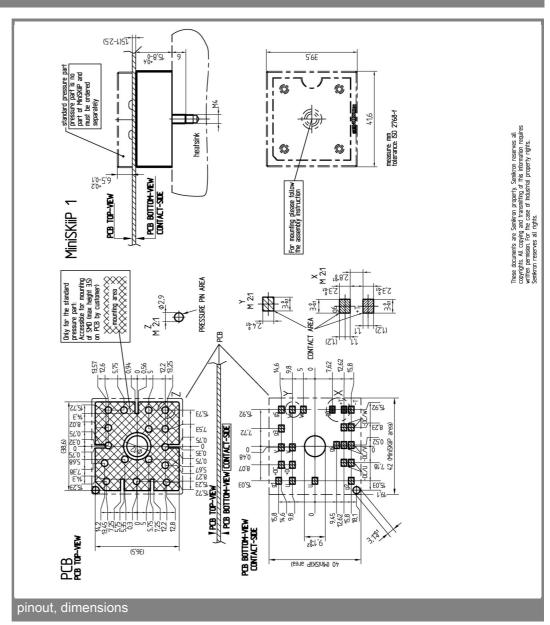
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 16 kVA
- Typical motor power 7.5 kW

Remarks


• V_{CEsat} , V_F= chip level value


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V_{CES}		1200	V				
I _C	T _s = 25 (70) °C	41 (31)	Α				
I _{CRM}	$t_p \le 1 \text{ ms}$	50	Α				
V_{GES}		± 20	V				
T_{j}		- 40 + 150	°C				
Diode - Inverter							
I _F	T _s = 25 (70) °C	30 (22)	Α				
I _{FRM}	$t_p \le 1 \text{ ms}$	50	Α				
T_j		- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	40	Α				
T_{stg}	$T_{op} \leq T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Character	istics T	T _s = 25 °C, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter									
V_{CEsat}	I _{Cnom} = 25 A, T _i = 25 (125) °C		1,7 (2)	2,1 (2,4)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$	5	5,8	6,5	V				
V _{CE(TO)}	T _i = 25 (125) °C		1 (0,9)	1,2 (1,1)	V				
r _T	T _j = 25 (125) °C		28 (44)	36 (52)	mΩ				
C _{ies}	V'_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		1,8		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,3		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,2		nF				
$R_{th(j-s)}$	per IGBT		0,9		K/W				
t _{d(on)}	under following conditions		95		ns				
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		35		ns				
t _{d(off)}	I _{Cnom} = 25 A, T _i = 125 °C		455		ns				
t _f `´	$R_{Gon} = R_{Goff} = 30 \Omega$		85		ns				
E _{on}	inductive load		4,1		mJ				
E _{off}			3,1		mJ				
Diode - Inverter									
$V_F = V_{EC}$	I _{Fnom} = 25 A, T _j = 25 (125) °C		1,8 (1,8)	2,1 (2,2)	V				
V _(TO)	$T_i = 25 (125) °C$		1 (0,8)	1,1 (0,9)	V				
r _T	T _i = 25 (125) °C		32 (40)	40 (52)	mΩ				
$R_{th(j-s)}$	per diode		1,7		K/W				
I _{RRM}	under following conditions		25		Α				
Q _{rr}	I _{Fnom} = 25 A, V _R = 600 V		5,3		μC				
E _{rr}	V _{GE} = 0 V, T _i = 125 °C		2,2		mJ				
	di _F /dt = 1140 A/μs								
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanical Data									
m			35		g				
M_s	Mounting torque	2		2,5	Nm				

SKiiP 13AC126V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

4 24-08-2006 SEN © by SEMIKRON