
SEMIX 403GB128D

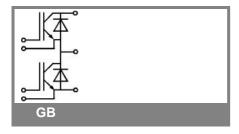
SEMiX[®] 3

SPT IGBT Modules

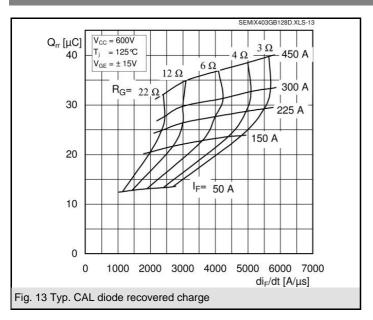
SEMIX 403GB128D

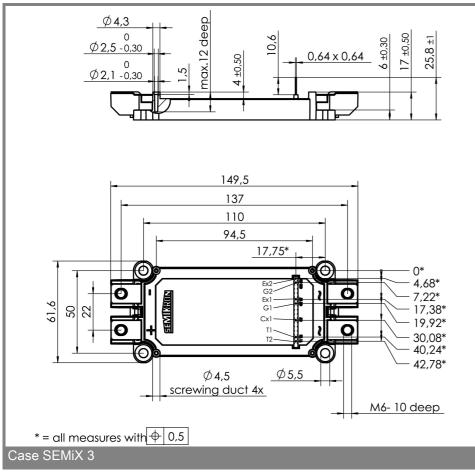
Preliminary Data

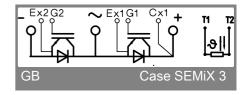
Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20 kHz


Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise s	case = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1200	V						
V _{CES}	T _c = 25 (80) °C	420 (300)	Α						
I _{CRM}	$t_p = 1 \text{ ms}$	450	Α						
V_{GES}		± 20	V						
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V_{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	340 (230)	Α						
I _{FRM}	$t_p = 1 \text{ ms}$	450	Α						
I _{FSM}	t_p = 10 ms; sin.; T_j = 25 °C	2000	Α						


Characte	ristics T _{ca}	se = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT	Conditions	111111.	typ.	max.	Jillo		
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 9 \text{ mA}$	4,5	5,5	6,5	ΙV		
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_i = 25$ (125) °C	1,0	0,0	0,3	mA		
V _{CE(TO)}	$T_i = 25 (125) ^{\circ}C$		1 (0,9)	1,15 (1,05)	V		
r _{CE}	V _{GE} = 15 V, T _i = 25 (125) °C		,	5,3 (6,7)	mΩ		
V _{CE(sat)}	I _{Cnom} = 225 A, V _{GE} = 15 V,			2,35 (2,55)	V		
CE(Sat)	T _i = 25 (125) °C, chip level		,- (, ,	, (, ,			
C _{ies}	under following conditions		18,6		nF		
C _{oes}	$V_{GF} = 0$, $V_{CF} = 25$ V, $f = 1$ MHz		2,2		nF		
C _{res}	GE 1, CE 11, 1 1111		2,1		nF		
L _{CE}			20		nΗ		
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C		0,7 (1)		mΩ		
t _{d(on)} /t _r	V _{CC} = 600 V, I _{Cnom} = 225 A		145 / 60		ns		
$t_{d(off)}/t_{f}$	V _{GE} = ± 15 V		575 / 70		ns		
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 °C$		19 (22)		mJ		
Inverse d							
$V_F = V_{EC}$	I_{Fnom} = 225 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		2 (1,8)	2,5 (2,3)	V		
$V_{(TO)}$	T _i = 25 (125) °C		1,1	1,2	V		
r _T	T _i = 25 (125) °C		4	5,8	mΩ		
I_{RRM}	I_{Fnom} = 225 A; T_j = 25 (125) °C		(260)		Α		
Q_{rr}	di/dt = 4950 A/μs		(29)		μC		
E _{rr}	V _{GE} = -15 V		(10)		mJ		
Thermal of	characteristics						
$R_{th(j-c)}$	per IGBT			0,075	K/W		
$R_{th(j-c)D}$	per Inverse Diode			0,133	K/W		
$R_{th(j-c)FD}$	per FWD				K/W		
$R_{th(c-s)}$	per module		0,04		K/W		
Temperat	ure sensor						
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ		
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K		
Mechanical data							
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
w			289		g		

SEMIX 403GB128D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.