
SEMIX 352GB128D

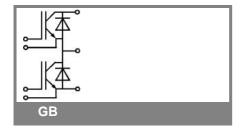
SEMiX[®] 2

SPT IGBT Modules

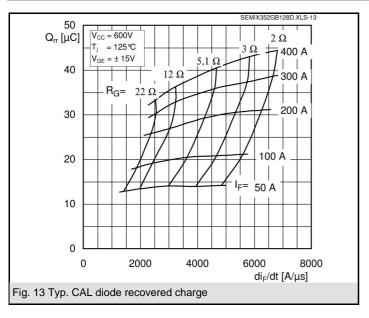
SEMIX 352GB128D

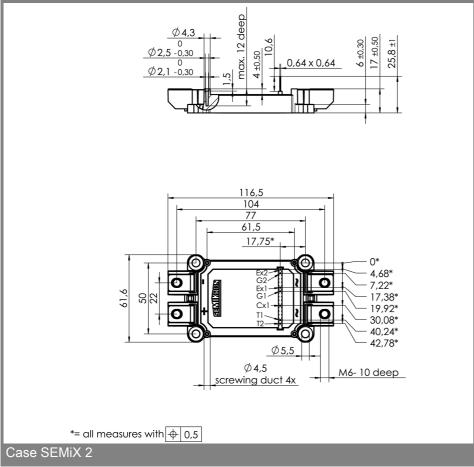
Preliminary Data

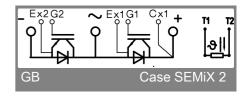
Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders


Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V_{CES}		1200	V						
I _C	T _c = 25 (80) °C	370 (260)	Α						
I _{CRM}	t _n = 1 ms	400	Α						
V_{GES}		± 20	V						
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C						
V_{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	270 (180)	Α						
I _{FRM}	t _p = 1 ms	400	Α						
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	1600	Α						


Character	ristics	Case = 25°C	_e = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT		•				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 () ^{\circ}C$			0,3	mA	
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,15 (1,05)	V	
r _{CE}	$V_{GE} = 15 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		4,5 (6)	6 (7,5)	mΩ	
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V,		1,9 (2,1)	2,35 (2,55)	V	
	T _j = 25 (125) °C, chip level					
C _{ies}	under following conditions		18		nF	
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V, f} = 1 \text{ MHz}$				nF _	
C _{res}			40		nF	
L _{CE}			18		nH	
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ	
t _{d(on)} /t _r	$V_{CC} = 600 \text{ V}, I_{Cnom} = 200 \text{ A}$		230 / 55		ns	
t _{d(off)} /t _f	V _{GE} = ± 15 V		585 / 90		ns	
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = 3 \Omega, T_j = 125 °C$		20 (21)		mJ	
Inverse di					Ī	
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V; T_j = 25 (125) $^{\circ}$ C, chip level)	2 (1,8)	2,5 (2,3)	V	
$V_{(TO)}$	T _j = 25 (125) °C		1,1	1,2	V	
r _T	$T_j = 25 (125) ^{\circ}\text{C}$		4,5	6,5	mΩ	
I _{RRM}	$I_{Fnom} = 200 \text{ A; } T_j = 25 \text{ (125) }^{\circ}\text{C}$		(240)		A	
Q _{rr}	di/dt = 5300 A/μs		(31)		μC	
E _{rr}	V _{GE} = -15 V		(11)		mJ	
Thermal c	characteristics				·	
R _{th(j-c)}	per IGBT			0,085	K/W	
R _{th(j-c)D}	per Inverse Diode			0,18	K/W	
R _{th(j-c)FD}	per FWD				K/W	
R _{th(c-s)}	per module		0,045		K/W	
_	ure sensor				Ī	
R ₂₅	T _c = 25 °C		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K	
Mechanic	al data					
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
w			236		g	

SEMiX 352GB128D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.