- -

T-23-07

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MDA3500 Series

RECTIFIER ASSEMBLY

. . utilizing individual void-free molded MR2500 Series rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base -1800 Volts
- UL Recognized
- Cost Effective in Lower Current Applications

SINGLE-PHASE **FULL-WAVE BRIDGE**

35 AMPERES 50-1000 VOLTS

MAXIMUM RATINGS

		MDA							
Rating (Per Diode)	Symbol	3500	3501	3502	3504	3506	3508	3510	Unit
Peak Repetitive Reverse Voltage	VRRM								
Working Peak Reverse Voltage	VRWM	50	100	200	400	600	800	1000	Volts
DC Blocking Voltage	VR								
DC Output Voltage Resistive Load Capacitive Load	Vdc Vdc	30 50	62 100	124 200	250 400	380 600	500 800	1000	Volts Volts
Sine Wave RMS Input Voltage	V _R (RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55°C)	lo	35					Amp		
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM						Amp		
Operating and Storage Junction Temperature Range	TJ,Tştg	65 to +175 °C					°C		

THERMAL CHARACTERISTICS (Total Bridge)

11121111112						
ı	Characteristic	Symbol	Тур	Max	Unit	l
i	Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.4	1.87	°C/W	I

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (ig = 55 A)*	٧F	-	1.0	1.1	Volts
Reverse Current (Per Diode) (Rated VR)	I _R	_	_	10	μΑ

MECHANICAL CHARACTERISTICS

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal designation embossed on case:

- +DC output -DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicone grease on mounting surface for maximum heat transfer. WEIGHT: 40 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes. MOUNTING TORQUE: 20 in-lb max

- VOIES:

 1 DIMENSION "O" SHALL BE MEASURED ON
 HEATSINK SIDE OF PACKAGE.

 2 DIMENSIONS F AND G SHALL BE MEASURED AT THE REFERENCE PLANE.

	MILLIN	RETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α.	34 80	35.18	1 370	1.385	
С	12.44	13 97	0 490	0.550	
D	6.10	6 60	0.240	0.260	
F	13.97	14 50	0.550	0 571	
G	28.00	29 00	1.100	1.142	
j	0.71	0.86	0 028	0 034	
K	9 52	11 43	0 375	0.450	
L	1.52	2.06	0.060	0 081	
P	2 79	2.92	0 110	0.115	
Q.	4 32	4 83	0.170	0.190	

CASE 309A-02

^{*}Pulse Width = 100 ms, Duty Cycle ≤ 2%.

0.5

08

FIGURE 2 - NON REPETITIVE SURGE CURRENT

FIGURE 3 - FORWARD VOLTAGE

VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 5 - FORWARD POWER DISSIPATION

3-160

FIGURE 6 - TYPICAL THERMAL RESPONSE

Tj = Tc + \DTjc

where Δ TJC is the increase in junction temperature above the case temperature. It may be

 $\Delta \mathsf{TJC} = \mathsf{P}_{\mathsf{pk}} \, \bullet \, \mathsf{R}_{\mathsf{\theta}\mathsf{JC}} \, [0 + (1 - 0) \, \bullet \, \mathsf{r}(t_1 + t_p) + \mathsf{r}(t_p) - \mathsf{r}(t_1)]$

r(t) = normalized value of transant thermal resistance at time, t, from Figure 6, i.e., $r(t_1+t_2)$ = normalized value of transient thermal resistance at time t_1+t_2 .

FIGURE 7 - CAPACITANCE

FIGURE 8 - FORWARD RECOVERY TIME

FIGURE 9 - REVERSE RECOVERY TIME

3-161

AMBIENT TEMPERATURE DERATING INFORMATION

FIGURE 10A - THERMALLOY HEATSINK 6005B

FIGURE 10B - IERC HEATSINK UP3 AND NO HEATSINK

NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1) $\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3}$ + R₀₄ K₀₄ P_{D4}

Where ΔT_{J1} is the change in junction temperature of diode 1 R₀₁ thru 4 is the thermal resistance of diodes 1 through 4 P_{D1} thru 4 is the power dissipated in diodes 1 through 4

 $K_{\theta 2}$ thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as

(2) $R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$

Where: PDT is the total package power dissipation

Assuming equal thermal resistance for each die, equation (1)

simplifies to (3) 4 T_{J1} = 8 4 (PD₁ + 6 4 PD₂ + 6 4 PD₃ + 6 4 PD₄). For the conditions where PD₁ = 4 PD₂ = 4 PD₃ = 4 PD₄, PDT = 4 PD₁, equation (3) can be further simplified and by substituting into equation (2) results in

(4) $R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$

When the case is used as a reference point, coupling between die is neglegible for the MDA3500. When the bridge is used without a heatsink, coupling between die is approximately 70% and $\rm R_{\theta 1}$ is $\rm 30^{\circ} C/W$,

 $A\theta(EFF) = 30[1 + (3)(.7)]/4 = 23°C/W$

NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A = I_B$, derating information can be calculated as follows:

(6) $T_R(Max) = T_J(Max) = \Delta T_J1$ Where $T_R(Max)$ is the reference temperature (either case or ambient)

 ΔT_{J1} can be calculated using equation (3) in Note 2.

For example, to determine $T_{C\{Max\}}$ for the MDA3500 with the following capacitive load conditions.

 $I_A = 20$ A average with a peak of 60 A $I_B = 10$ A average with a peak of 70 A

Ig = 10 A average with a peak or 70 A First calculate the peak to average ratio for IA. $\frac{1}{PK}/\frac{1}{AV} = 60/10 = 6.0$. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average). From Figure 5, for an average current of 20 A and an $\frac{1}{PK}/\frac{1}{AV} = 6.0$ read $\frac{PDT}{AV} = 40$ watts or 10 watts/diode. Thus $\frac{PDT}{AV} = \frac{10}{PDT} = \frac{10}{PDT}$

Thus, the package power dissipation for 10 A is 20 watts or 5.0 watts/diode $\dot{\cdot}$ PD2 = PD4 = 5.0 watts. The maximum junction temperature occurs in diode #1 and #3. From equation (3) for diode #1 ΔT_{J1} = (7.5) (10), since coupling is negligible. $\Delta T_{J1} \approx 75^{\circ}$ C Thus TC(Max) = 175 –75 = 100°C Thus TC(Max) = 175 –75 = 100°C The total package dissipation in this example is: PDT(AV) = 2 x 10 + 2 x 5.0 = 30 watts, which must be considered when selecting a heat sink.

FIGURE 11- BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

7

3-162