LDIP-IPM IM13400

Description

Cyntec IPM is integrated drive, protection and system control functions that is designed for high performance 3-phase motor driver application like :

- Home appliances applications.
- Inverter drive parts for AC/DC motor driving.

Features

- High latch-up immunity.
- Low switching loss and higher short-circuit withstanding capability.
- Low temperature coefficient effect both for driver and IGBT.
- Integrated driver IC to reduce the PCB size and layout effort.
- High noise rejection capability.
- Under-voltage lockout protection both for high and low side IGBT.
- High Vcc and Input signal port voltage rating.
- Good thermal performance.
- Matched propagation delay for three arms.
- Automatic shut-off the high and low side IGBT to avoid shoot-through conduction in case the driving signal is abnormal.
- Provided a fault signal (FO pin) and shut-off internal IGBT, when OC/SC and under-voltage situation are occurred.

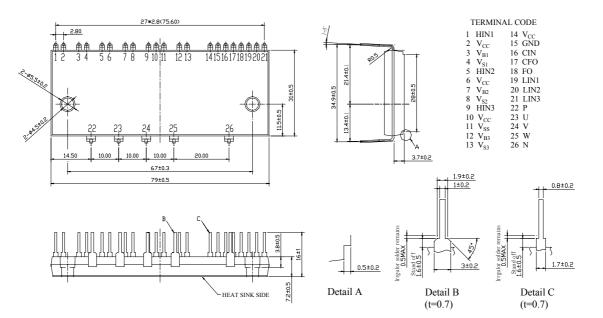
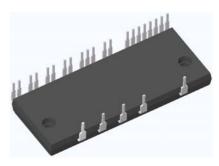
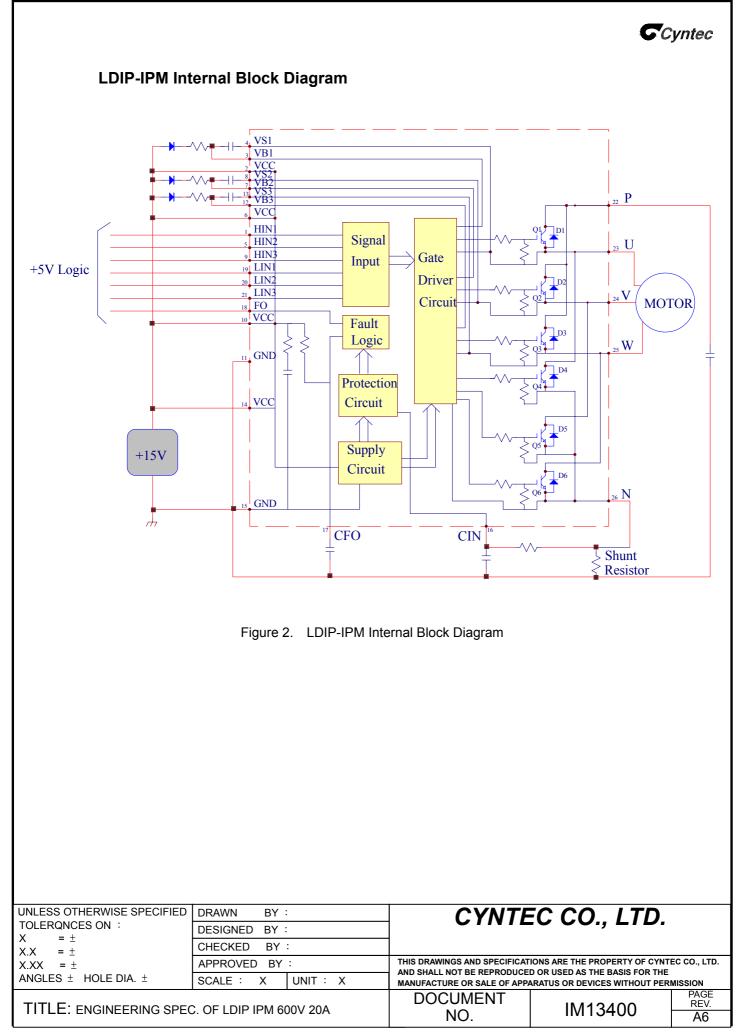



Figure 1. Package Outlines

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTEC CO., LTD.			
TOLERQNCES ON : X = \pm	DESIGNED BY	:				
$X = \pm$	CHECKED BY	:	7			
$X.XX = \pm$	APPROVED BY :		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE			
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION			
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	IM13400	PAGE REV.	
TITLE. ENGINEERING SPEC. OF LDIP IPM 000V 20A		NO.	11113400	A6		



No.	Symbol	Pin Description
1	HIN1	Signal Input Terminal for High-side U Phase
2	V _{cc}	Supply Voltage Terminal for Driver IC
3	V _{B1}	High -side Bias Voltage for U Phase IGBT Driving
4	V _{S1}	High -side Bias Voltage Ground for U Phase IGBT Driving
5	HIN2	Signal Input Terminal for High-side V Phase
6	V _{cc}	Supply Voltage Terminal for Driver IC
7	V _{B2}	High -side Bias Voltage for V Phase IGBT Driving
8	V _{S2}	High -side Bias Voltage Ground for V Phase IGBT Driving
9	HIN3	Signal Input Terminal for High-side W Phase
10	V _{cc}	Supply Voltage Terminal for Driver IC
11	GND	Signal Ground
12	V _{B3}	High -side Bias Voltage for W Phase IGBT Driving
13	V _{S3}	High -side Bias Voltage Ground for W Phase IGBT Driving
14	V _{cc}	Supply Voltage Terminal for Driver IC
15	GND	Signal Ground
16	CIN	Comparator Input
17	CFO	Capacitor for Fault Output Duration Time Selection
18	FO	Fault Output Terminal
19	LIN1	Signal Input Terminal for Low-side U Phase
20	LIN2	Signal Input Terminal for Low-side V Phase
21	LIN3	Signal Input Terminal for Low-side W Phase
22	Р	Positive DC-Bus Input Terminal
23	U	Output Terminal for U Phase
24	V	Output Terminal for V Phase
25	W	Output Terminal for W Phase
26	N	Negative DC-Bus Input Terminal

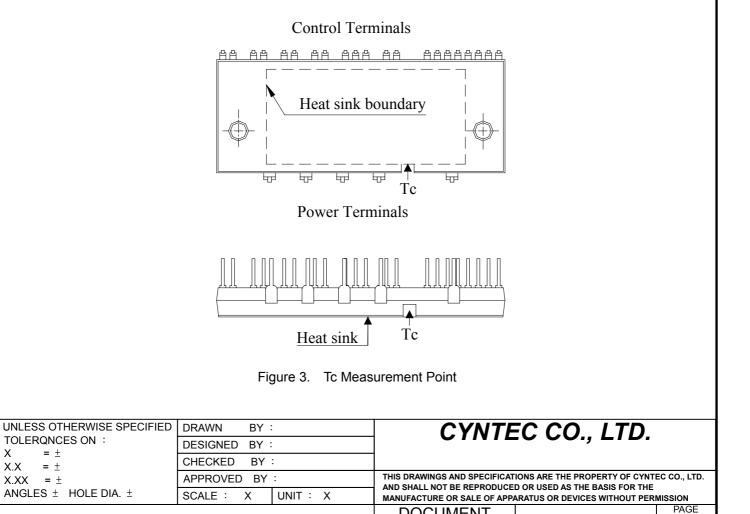
UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTEC CO., LTD.			
TOLERQNCES ON : X = \pm	DESIGNED BY :	:				
$x = \pm$ X.X = \pm	CHECKED BY	:				
$X.XX = \pm$	APPROVED BY :		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE			
ANGLES \pm HOLE DIA. \pm	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION			
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	IM13400	PAGE REV.	
TTLE. ENGINEERING SPEC. OF LDIF IFF		00V 20A	NO.	110113400	A6	

MAXIMUM RATINGS ($T_j = 25^{\circ}C$)

INVERTER PART

Item	Symbol	Min.	Max.	Unit
Between collector to emitter voltage	V _{CES}	-	600	V
Each IGBT collector current	\pm I _C (Tc = 25°C)	-	20	А
Each IGBT collector current (peak)	\pm I _{CP} (Tc = 25°C, pulse)	-	40	А
Junction temperature	Tj	-20	+150	°C

CONTROL PART


Item	Symbol	Min.	Max.	Unit
Driver IC supply voltage	V _{CC}	-0.3	25	V
P- side floating supply voltage	V _{B1S1,B2S2,B3S3}	-0.3	20	V
Current sensing input voltage	V _{CIN}	-0.3	25	V
Logic input voltage	HIN1,HIN2,HIN3, LIN1,LIN2,LIN3	-0.3	25	V
Fault output voltage	V _{FO}	-0.3	25	V

TOTAL SYSTEM

Item	Symbol		Min.	Max.	Unit
Module case operating temperature	Tc	(Note 1)	-20	+100	°C
Storage temperature	T _{stg}		-40	+150	°C
Isolation voltage (60Hz Sinusoidal, AC 1 minute, pins to heat-sink plate)	V _{iso}		-	2500	Vrms

Note 1 : Tc Measurement Point.

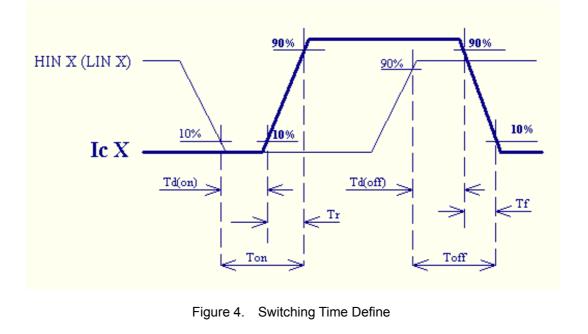
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A

DOCUMENT

NO.

IM13400

REV.


A6

ELECTRICAL CHARACTERISTICS (T_j = 25° C)

INVERTER PART

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
Collector-emitter saturation voltage	V _{CE (sat)}	$V_{CC} = V_{B1S1,B2S2,B3S3} = 15V,$ $I_C = 20A, V_{CIN} = 0V$ $T_j = 25^{\circ}C$		-	2.3	2.8	V
FWD forward voltage drop	V _F	$T_j = 25^{\circ}C$, - $I_C = 20A$, $V_{CIN} = 5V$		-	2.0	2.4	V
Switching times (Fig. 4)	T _{on}	V _D = 300V,		-	0.6	0.8	
	Tr	$V_{CC} = V_{B1S1,B2S2,B3S3} = 15V,$			0.06	0.12	
	T _{off}	$I_{c} = 20A, T_{j} = 25^{\circ}C,$		-	1.0	1.2	μ s
	T _f	V _{HIN} =5V<—> 0V, V _{CIN} = 0V, Inductive Load		-	0.05	0.1	
Collector-emitter cut-off current	I _{CES}	V _{CE} =V _{CES}		-	-	0.32	mA

UNLESS OTHERWISE SPECIFIED	DRAWN BY :	:	CYNTEC CO., LTD.				
TOLERQNCES ON : X = +	DESIGNED BY :	:					
$ - \pm $ X.X = ±	CHECKED BY	:					
$X.XX = \pm$			THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE				
ANGLES \pm HOLE DIA. \pm	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION				
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	IM13400	PAGE REV.		
IIILL. ENGINEERING SPEC	J. OF LDIP IPIVI 600V 20A		NO.	111113400	A6		

Test condition : Vdc =300V, Ic = 20A, Vcc = 15V, Vin = 0V \rightarrow 5V (Inductive Load), TC = 25°C

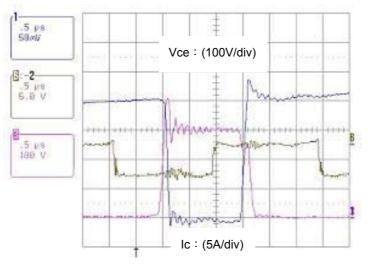


Figure 5. Testing Switching Waveform

CONTROL PART (T_j = $25^{\circ}C$)

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
HIN1,2,3 , LIN1,2,3 ON threshold voltage	V _{th(on)}			1.4-	1.7	2.0	V
HIN1,2,3 , LIN1,2,3 OFF threshold voltage	V _{th(off)}			2.2	2.5	2.8	V
HIN1,2,3 input current	I _{HIN(HI)}	V _{HIN1,2,3} = 5V		-	-	220	μA
rinvi,2,3 input current	I _{HIN(LO)}	$V_{HIN1,2,3} = 0V$		-	-	300	μη
LIN1,2,3 input current	I _{LIN(HI)}	V _{LIN1,2,3} = 5V		-	-	220	^
	I _{LIN(LO)}	$V_{LIN1,2,3} = 0V$		-	-	300	μA
Driver IC supply voltage	Vcc			13.5	15.0	16.5	V
P-side floating supply voltage	V _{B1S1,B2S2,B3S3}			13.5	15.0	16.5	V
V _{CC} terminal input current	lc			-	-	2.3	mΑ
	V _{FOH}	V _{CIN} =0V	(Note 2)	4.9	-	-	V
Fault output voltage	V _{FOL}	V _{CIN} =1V	(Note 2)	-	-	200	mV
Short circuit trip level	V _{SC(ref)}	V _{CC} =15V, T _j = 25℃		0.37	0.46	0.55	V
Fault output pulse width	t _{FO}	C _{F O} =22nF ~ 33nF	(Note 3)	-	1.8	-	ms
	UVT _{VCC}	Trip level		10.4	10.9	11.4	V
Supply circuit under voltage	UVR _{VCC}	Reset level		10.6	11.1	11.6	V
protection	UVH	Hysteresis		-	0.2	-	V

Note 2 : FO output is open collector type, so this signal line should be pulled up to the +5V power supply with approximately 5.1K Ω .

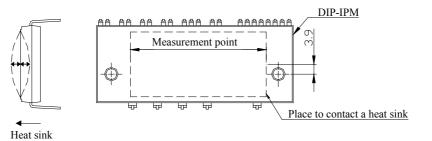
Note 3: C_{FO} need to adjust if output can not fit 1.8 ms demand.

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTEC CO., LTD.				
TOLERQNCES ON : X = \pm	DESIGNED BY	:					
$x = \pm$	CHECKED BY	:					
$X.XX = \pm$	APPROVED BY :		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE				
ANGLES \pm HOLE DIA. \pm	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION				
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	IM13400	PAGE REV.		
TTTLL. ENGINEERING SPEC. OF LDIP IPM 6000 ZUA		NO.	10113400	A6			

THERMAL RESISTANCE

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to case thermal	R _{th(j-c)Q}	IGBT part (1/6)	-	-	1.1	°C AA/
resistance	R _{th(j-c)F}	FWD part (1/6)	-	-	1.6	°C/W

RECOMMENDED OPERATION CONDITIONS


Item	Symbol	Condition		Тур.	Max.	Unit
DC_ Link Supply voltage	VD	Applied between P-N		300	400	V
Control supply voltage	V _{CC}	Applied between V _{CC} - GND	13.5	15.0	16.5	V
Control supply voltage	V _{B1S1,B2S2,B3S3}	Applied between $V_{B1,2,3} - V_{S1,2,3}$	13.5	15.0	16.5	V
Input ON threshold voltage	V _{CIN(ON)}	Applied between HIN1,2,3 - GND	0~0.65			V
Input OFF threshold voltage	V _{CIN(OFF)}	and LIN1,2,3 - GND		4.0 ~ 5.5		V
Supply voltage ripple	ΔV_D , ΔV_{DB}		-1	-	1	V/μs
Arm shoot-through blocking time	t _{dead}	(Note 4)	2	-	-	$\mu{f s}$
PWM Input frequency	f _{PWM}	T _C ≦100℃, T _j ≦125℃	-	15	-	kHz

Note 4 : To prevent high and low side IGBT occurred shoot-through.

MECHANICAL CHARACTERISTICS AND RATINGS

Item	Condition		Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw:M4	Recommended 1.18 N • m	0.98	1.18	1.37	N-m
Weight			-	75	-	g
Heat-sink flatness	(Note 5)		-50	-	100	μ m

Note 5 : Measurement point of heat-sink flatness.

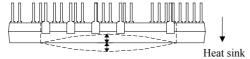



Figure 6. Measurement Point of Heat-sink Flatness

UNLESS OTHERWISE SPECIFIED	DRAWN BY :			CYNTEC CO., LTD.		
TOLERQNCES ON :	DESIGNED BY :					
$\begin{array}{c} X &= \pm \\ X X &= \pm \end{array}$	CHECKED BY :					
$X.XX = \pm$ ANGLES \pm HOLE DIA. \pm	APPROVED BY :			THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LT		
	SCALE : X	(UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION		
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	IM13400	PAGE REV.	
TITLE. ENGINEERING SPEC	J. OF LDIP IPIN 600V 20A		JV 20A	NO.	11113400	A6

Cyntec

LDIP-IPM Short-Circuit Protection Function

- S1. Normal operation : IGBT ON and carrying current.
- S2. Short circuit current detection (SC trigger).
- S3. IGBT gate interrupt and FO signal starts.
- S4. IGBT turns OFF.
- S5. IGBT OFF state.
- S6. FO signal reset.
- S7. Normal operation.

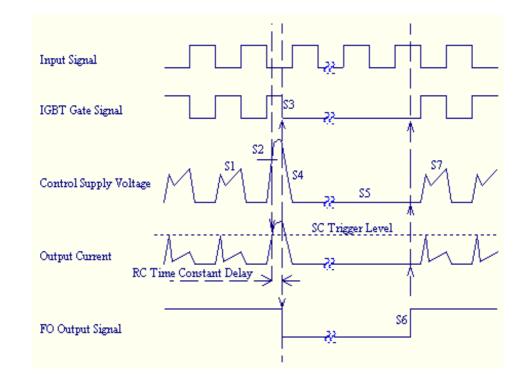


Figure 9. Timing Chart of SC Operation

UNLESS OTHERWISE SPECIFIED	DRAWN BY : DESIGNED BY :		CYNTEC CO., LTD.			
TOLERQNCES ON :						
$\begin{array}{ll} X &= \pm \\ X.X &= \pm \end{array}$	CHECKED BY	:				
$X.XX = \pm$	APPROVED BY		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION			
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X				
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	PAGE REV.		
TTLL. ENGINEERING SPEC	J. OF LDIF IFW 000V 20A		NO.	IM13400	A6	

LDIP-IPM Under-Voltage Protection Function

- S1. Normal operation : IGBT ON and carrying current.
- S2. Under-Voltage detection.
- S3. IGBT gate interrupt.
- S4. IGBT OFF state.
- S5. Under-Voltage reset.
- S6. Normal operation.

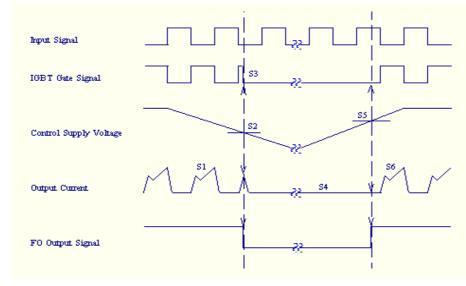
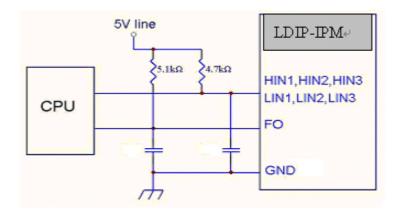
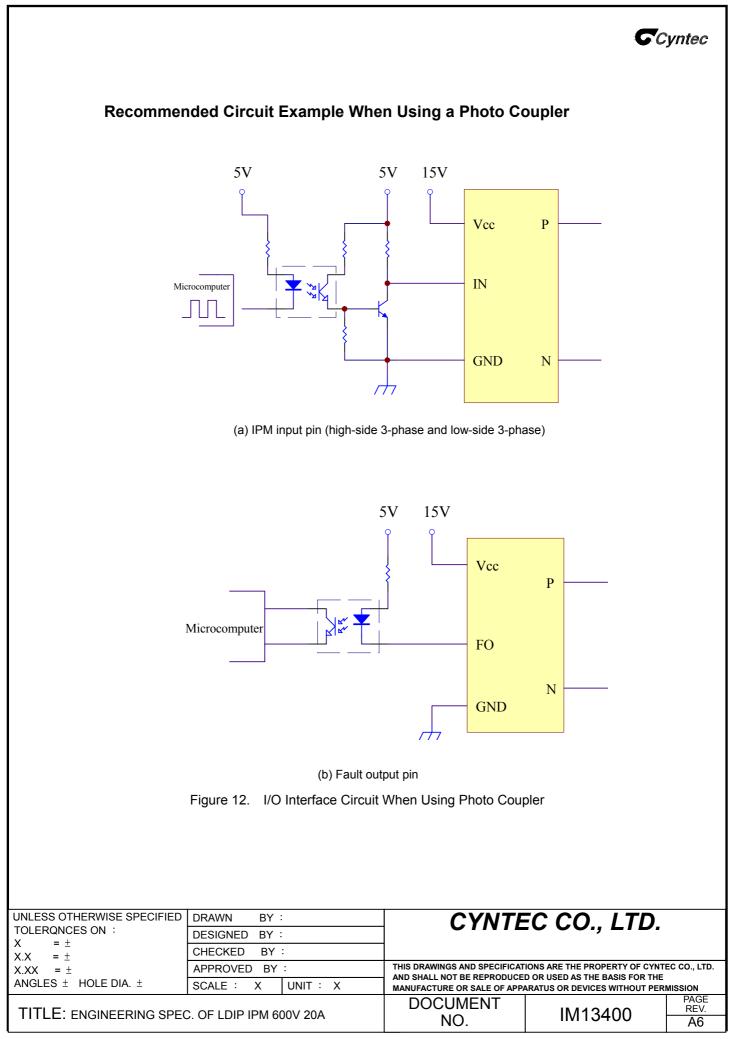
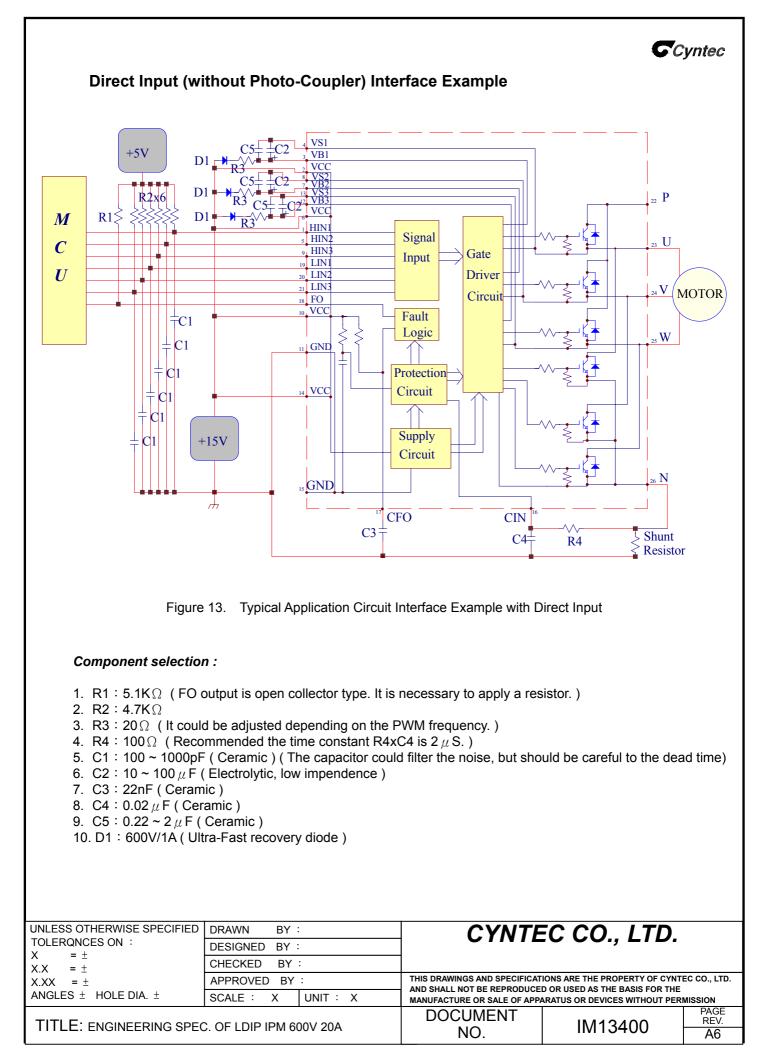
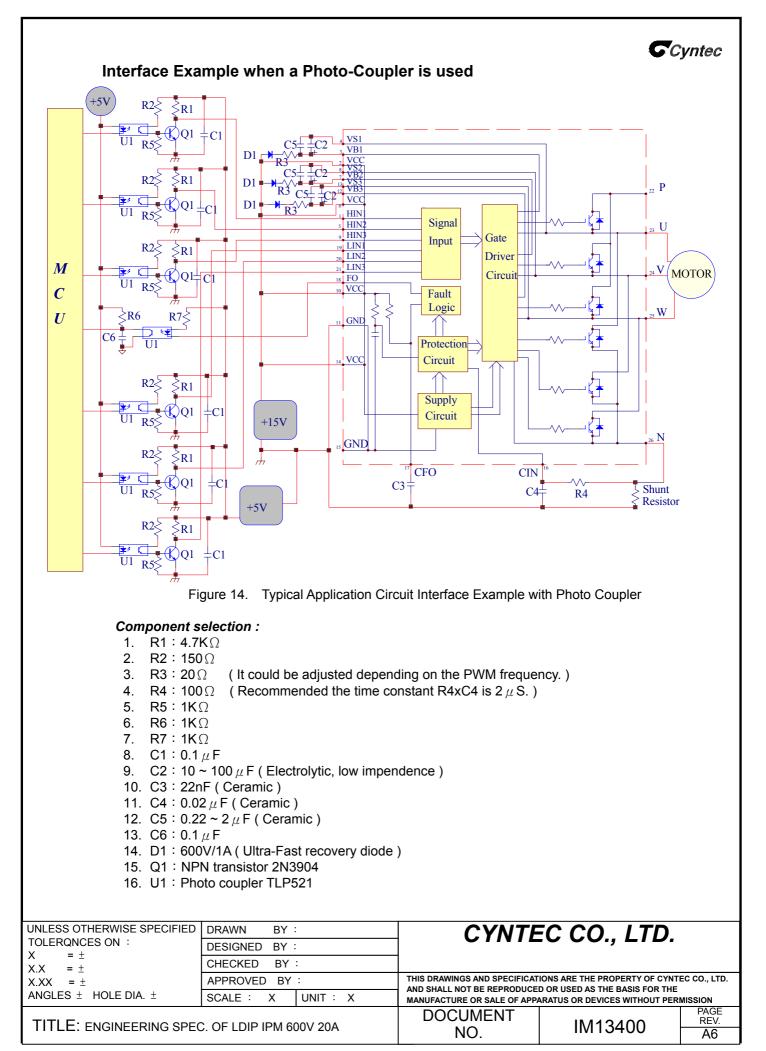


Figure 10. Timing Chart of Under-Voltage Operation

Recommended CPU I/O Interface Circuit


Figure 11. I/O Interface Circuit

Note 7: Depending on the wiring impedances and the PWM control circuit of the application's PCB, the RC coupling at each input may be changed.

UNLESS OTHERWISE SPECIFIED	DRAWN BY :		CYNTEC CO., LTD.				
TOLERQNCES ON : X = +	DESIGNED BY	:					
$\mathbf{X} = \pm$ $\mathbf{X} \mathbf{X} = \pm$	CHECKED BY	:					
$X.XX = \pm$	APPROVED BY :		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD.				
ANGLES \pm HOLE DIA. \pm	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION				
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	IM13400	PAGE REV.		
TTLL. ENGINEERING SPEC	DE LDIE IEW 000V ZUA		NO.	11/11/10400	A6		

PAGE 13 OF 1

Precautions on Electrostatic Electricity

- (1) Operators must wear anti-static clothing and conductive shoes (or a leg or heel strap).
- (2) Operators must wear a wrist strap grounded to earth via a resistor of about 1 M Ω .
- (3) Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages.
- (4) If the tweezers you use are likely to touch the device terminals, use anti-static tweezers and in particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip, and connect it to a dedicated ground used especially for anti-static purposes (suggested resistance value: 10⁴ to 10⁸Ω).
- (5) Do not place devices or their containers near sources of strong electrical fields (such as above a CRT).
- (6) When storing printed circuit boards which have devices mounted on them, use a board container or bag that's protected against static charge. To avoid the occurrence of static charge or discharge due to friction, keep the boards separate from one other and do not stack them directly on top of one another.
- (7) Ensure, if possible, that any articles (such as clipboards) which are brought to any location where the level of static electricity must be closely controlled are constructed of anti-static materials.
- (8) In cases where the human body comes into direct contact with a device, be sure to wear anti-static finger covers or gloves (suggested resistance value: $10^8 \Omega$ or less).
- (9) Equipment safety covers installed near devices should have resistance ratings of $10^9 \Omega$ or less.
- (10) If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction to devices, use an ionizer.

UNLESS OTHERWISE SPECIFIED	DRAWN BY :			EC CO., LTD.			
	DESIGNED BY :						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CHECKED BY :						
$X.XX = \pm$	APPROVED BY :		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD.				
ANGLES \pm HOLE DIA. \pm	SCALE : X UNI	т: х	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION				
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 20A			DOCUMENT	IM13400	PAGE REV.		
TTLL. ENGINEERING SPEC	J. OF LDIP IPW 600V 20A		NO.	11113400	A6		

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.