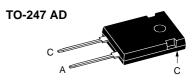


Fast Recovery Epitaxial Diode (FRED)


DSEI 30

 $I_{FAVM} = 26 A$ $V_{RRM} = 1200 V$

 $t_{rr} = 40 \text{ ns}$

V _{RSM}	V _{RRM}	Туре
V	V	
1200	1200	DSEI 30-12A

A = Anode, C = Cathode

Symbol	Test Conditions	Maximum Ratings	
I _{FRMS} ①	T _{vJ} = T _{vJM} T _c = 85°C; rectangular, d = 0.5	70 26	A A
FRM	t_p < 10 μ s; rep. rating, pulse width limited by T_{VJM}	375	Α
I _{FSM}	$T_{yy} = 45^{\circ}C;$ t = 10 ms (50 Hz), sine	200	Α
	t = 8.3 ms (60 Hz), sine	210	Α
	$T_{\text{MI}} = 150^{\circ}\text{C}; t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	185	Α
	t = 8.3 ms (60 Hz), sine	195	Α
l²t	$T_{yy} = 45^{\circ}C$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	200	A ² s
	t = 8.3 ms (60 Hz), sine	180	A^2s
	$T_{\text{VI}} = 150^{\circ}\text{C}; t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	170	A²s
	t = 8.3 ms (60 Hz), sine	160	A^2s
T _{vJ}		-40+150	°C
T _{v m}		150	°C
T _{stg}		-40+150	°C
P _{tot}	T _c = 25°C	138	W
M _d	Mounting torque	0.81.2	Nm
Weight		6	g

Symbol	bol Test Conditions		Characteristic Values		
		typ.	max.		
I _R	$\begin{array}{lll} T_{\text{VJ}} = 25^{\circ}\text{C} & \text{V}_{\text{R}} = \text{V}_{\text{RRM}} \\ T_{\text{VJ}} = 25^{\circ}\text{C} & \text{V}_{\text{R}} = 0.8 \bullet \text{V}_{\text{RRM}} \\ T_{\text{VJ}} = 125^{\circ}\text{C} & \text{V}_{\text{R}} = 0.8 \bullet \text{V}_{\text{RRM}} \end{array}$		750 250 7	μΑ μΑ mA	
V _F	$I_F = 30 \text{ A};$ $T_{VJ} = 150^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$		2.2 2.55	V V	
$\begin{matrix} V_{\tau o} \\ r_{_T} \end{matrix}$	For power-loss calculations only $\rm T_{VJ} = \rm T_{VJM}$		1.65 18.2	$\begin{matrix} V \\ m\Omega \end{matrix}$	
R _{thJC} R _{thCK} R _{thJA}		0.25	0.9 35	K/W K/W K/W	
t _{rr}	$I_F = 1 \text{ A}$; -di/dt = 100 A/ μ s; $V_R = 30 \text{ V}$; $T_{VJ} = 25^{\circ}\text{C}$	40	60	ns	
I _{RM}	$V_R = 540 \text{ V}; I_F = 30 \text{ A}; -di_F/dt = 240 \text{ A}/\mu\text{s}$ $L \le 0.05 \mu\text{H}; T_{VJ} = 100^{\circ}\text{C}$	16	18	A	

Features

- International standard package JEDEC TO-247 AD
- · Planar passivated chips
- · Very short recovery time
- · Extremely low switching losses
- Low I_{RM}-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- · Inductive heating and melting
- Uninterruptible power supplies (UPS)
- · Ultrasonic cleaners and welders

Advantages

- · High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- · Low losses
- Operating at lower temperature or space saving by reduced cooling

IXYS reserves the right to change limits, test conditions and dimensions

 $[\]oplus$ I $_{FAVM}$ rating includes reverse blocking losses at T $_{VJM},\ V_R=0.8\ V_{RRM},\ duty\ cycle\ d=0.5$ Data according to IEC 60747