

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272

POW-R-BLOKTM Dual SCR Isolated Module 90 Amperes / Up to 1600 Volts

CD43__90
Dual SCR Isolated
POW-R-BLOKTM Module
90 Amperes / Up to 1600 Volts

Description:

Powerex Dual SCR Modules are designed for use in applications requiring phase control and isolated packaging. The modules are isolated for easy mounting with other components on a common heatsink. POW-R-BLOKTM has been tested and recognized by the Underwriters Laboratories.

Features:

- Electrically Isolated Heatsinking
- DBC Alumina (Al₂O₃) Insulator
- Glass Passivated Chips
- DBC Alumina (Al₂O₃) Baseplate
- Low Thermal Impedance for Improved Current Capability
- UL Recognized (E78240)

CD43 Outline Dimensions

Dimension	Inches	Millimeters	
А	3.62	92	
В	0.81	20.5	
С	3.15	80	
D	1.18	30	
F	0.59	15	
G	0.79	20	
Н	0.79	20	
J	0.16	4	
K	0.23	5.8	
L	0.61	15.5	
М	1.14	29	
N	0.24	6.1	
Р	0.94	24	
Q	1.18	30	
R	0.71	18	
S	0.11 x .03	2.8 x 0.8	
Т	0.25	6.3	
U	M5	M5	
N. I. Birring			

Note: Dimensions are for reference only

Ordering Information:

Select the complete eight digit module part number from the table below. Example: CD431690 is a 1600Volt, 90 Ampere Dual SCR Isolated *POW-R-BLOK*TM Module

Туре	Voltage Volts (x100)	Current Amperes (x 1)
CD43	08 12 16	90

Benefits:

- No Additional Insulation Components Required
- Easy Installation
- No Clamping Components Required
- Reduce Engineering Time

Applications:

- Bridge Circuits
- AC & DC Motor Drives
- Battery Supplies
- Power Supplies
- Large IGBT Circuit Front Ends
- Lighting Control
- Heat & Temperature Control
- Welders

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272

POW-R-BLOK[™] Dual SCR Isolated Module 90 Amperes / Up to 1600 Volts

Absolute Maximum Ratings

Characteristics	Conditions	Symbol		Units
Repetitive Peak Forward and Reverse Blocking Voltage		V _{DRM} & V _{RRM}	up to 1600	V
Non-Repetitive Peak Reverse Blocking Voltage (t < 5 msec)		V_{RSM}	V _{RRM} + 100	V
RMS Forward Current	180° Conduction, T _C =87°C	I _{T(RMS)}	140	Α
	180° Conduction, T_C =87°C (AC Switch)	$I_{T(RMS)}$	200	Α
Average Forward Current	180° Conduction, T _C =87°C	$I_{T(AV)}$	90	Α
Peak One Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	1570	Α
	60 Hz, No V _{RRM} reapplied, T _j =125°C	I _{TSM}	1870	Α
	60 Hz, No V _{RRM} reapplied, T _i =25°C	I _{TSM}	I _{TSM} 2100	
	50 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	1500	Α
	50 Hz, No V _{RRM} reapplied, T _i =125°C	I _{TSM}	1785	Α
	50 Hz, No V _{RRM} reapplied, T _j =25°C	I _{TSM}	2000	Α
Peak Three Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _i =125°C	I _{TSM}	1210	А
	50 Hz, 100% V _{RRM} reapplied, T _i =125°C	I_{TSM}	1155	Α
Peak Ten Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	960	A
	50 Hz, 100% V _{RRM} reapplied, T _j =125°C	Ітѕм	940	Α
1 ² t for Fusing for One Cycle, 8.3 milliseconds	8.3 ms, 100% V _{RRM} reapplied, T _i =125°C	l ² t	10,270	A ² sec
The Fusing for One Cycle, C.S. miniscoulds	8.3 ms, No V_{RRM} reapplied, T_i =125°C	l ² t	14,520	A ² sec
	8.3 ms, No V _{RRM} reapplied, T _i =25°C	l ² t	18,300	A ² sec
	10 ms, 100% V _{RRM} reapplied, T _i =125°C	l ² t	11,250	A ² sec
	10 ms, No V _{RRM} reapplied, T _i =125°C	l ² t	15,910	A ² sec
	10 ms, No V _{RRM} reapplied, T _i =25°C	l ² t	20,000	A ² sec
Maximum Rate-of-Rise of On-State Current,	T _i =25°C, I _G =0.5 A,	di/dt	150	A/µs
(Non-Repetitive)	V _D =0.67 V _{DRM (Rated),} I _{TM} =300A ,			
	$T_r < 0.5 \mu s$, $t_p > 6 \mu s$			
Peak Gate Power Dissipation	T _p < 5 ms, T _j = 125°C	P_GM	12	W
Average Gate Power Dissipation	F = 50 Hz, T _j = 125°C	$P_{G(AV)}$	3	W
Peak Forward Gate Current	T _p < 5 ms, T _i = 125°C	I _{GFM}	3	Α
Peak Reverse Gate Voltage	T _p < 5 ms, T _i = 125°C	V_{GRM}	10	V
Operating Temperature		TJ	-40 to +125	°C
Storage Temperature		T _{stg}	-40 to +125	°C
Max. Mounting Torque, M5 Mounting Screw on		_	25	inLb.
Terminals Max. Mounting Torque, Module to Heatsink			<u>3</u> 44	Nm inLb.
wax. wounting rorque, woulde to neatslink			44 5	IIILD. Nm
Module Weight, Typical			83	g
			3	OZ.
V Isolation @ 25C	50 – 60 Hz, 1 minute	V_{rms}	2500	V
Circuit to base, all terminals shorted together	50 – 60 Hz, 1 second	V_{rms}	3500	V

Revision Date: 11/1/2001

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272

POW-R-BLOKTM
Dual SCR Isolated Module
90 Amperes / Up to 1600 Volts

Electrical Characteristics, T_J =25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Max.	Units
Repetitive Peak Forward Leakage Current	I _{DRM}	Up to 1600V, T _J =125°C		15	mA
Repetitive Peak Reverse Leakage Current	I _{RRM}	Up to 1600V, T _J =125°C		15	mA
Peak On-State Voltage	V _{TM} /V _{FM}	I _{TM /} I _{FM} =300A		1.58	V
Threshold Voltage, Low-level Slope Resistance, Low-level	V _{(TO)1} r _{T1}	$T_J = 125^{\circ}C$, $I = 16.7\% \times \pi I_{T(AV)}$ to $\pi I_{T(AV)}$		0.80 2.40	V m <u>Ω</u>
Threshold Voltage, High-level Slope Resistance, High-level	$V_{(TO)2}$ r_{T2}	$T_J = 125$ °C, $I = \pi I_{T(AV)}$ to I_{TSM}		0.85 2.25	V m <u>Ω</u>
V _{TM} Coefficients, Full Range		T _J = 125°C, I = 15% x I _{T(AV)} to I _{TSM}	A = B =	0.7160 2.17E-02	
		$V_{TM} = A + B Ln I + C I + D Sqrt I$	C = D =	2.20E-03 1.58E-03	
Minimum dV/dt	dV/dt	Linear to 2/3 V _{DRM} T _j =125°C, Gate Open Circuit	500		V/µs
Turn-Off Time (Typical)	t _{off}	T_J = 25°C, I_T = 2A V_r = 50V, -dl/dt=10 A/ μ s Re-Applied dV/dt = 200 V/ μ s, Linear to 900 V	40 - 100	(Typical)	μs
Gate Trigger Current	Ідт	T_{j} = -40°C, V_{D} =6V, Resistive Load T_{j} = 25°C, V_{D} =6V, Resistive Load T_{j} =125°C, V_{D} =6V, Resistive Load		270 150 80	mA mA mA
Gate Trigger Voltage	V _{GT}	T_j = -40°C, V_D =6V, Resistive Load T_j = 25°C, V_D =6V, Resistive Load T_j =125°C, V_D =6V, Resistive Load		4.0 2.5 1.7	Volts Volts Volts
Non-Triggering Gate Voltage	V_{GDM}	Tj=125°C, VD=VDRM		0.25	Volts
Non-Triggering Gate Current	I_{GDM}	T _j =125°C, V _D =V _{DRM}		6	mA
Holding Current	Ι _Η	V _D =6V, Resistive Load, Gate Open		200	mA
Latching Current	ΙL	V _D =6V, Resistive Load		400	mA

Thermal Characteristics

Thermal Characteristics					
Characteristics	Symbol			Max.	Units
Thermal Resistance, Junction to Case DC Operation	R _{OJ-C}	Per Module, both conducting Per Junction, both conducting		0.135 0.270	°C/W
Thermal Impedance Coefficients	Z _{ΘJ-C}	$Z_{\Theta J-C} = K_1 (1-\exp(-t/\tau_1))$ + $K_2 (1-\exp(-t/\tau_2))$	$K_1 = 6.48 E-3$ $K_2 = 6.02 E-2$	τ_1 = 5.80 E-4 τ_2 = 1.70 E-2	
		+ K_3 (1-exp(-t/ τ_3))	K ₃ = 1.64 E-1	τ_3 = 9.54 E-2	
		+ K ₄ (1-exp(-t/ _{T4}))	$K_4 = 3.94 E-2$	τ_4 = 3.53 E-1	
Thermal Resistance, Case to Sink Lubricated	R _{⊝C-S}	Per Module		0.1	°C/W

Revision Date: 11/1/2001