This data sheet contains advance information and specifications are subject to change without notice. BYT230PIV-1000 7-03-19 N AMER PHILIPS/DISCRETE ### ULTRA FAST-RECOVERY DOUBLE RECTIFIER DIODES Glass-passivated, high-efficiency epitaxial rectifier diodes in ISOTOP envelopes, featuring low forward voltage drop, ultra fast reverse recovery times, very low stored charge and soft-recovery characteristic. They are intended for use in switched-mode power supplies and high-frequency circuits in general, where both low conduction and low switching losses are essential. Their electrical isolation makes them ideal for mounting on a common heatsink alongside other components without the need for additional insulators. ### QUICK REFERENCE DATA | VRRM | max. | 1000 | V | |--------------------|--------------------------------------|-------------------------|--| | I _{F(AV)} | max. | 2 x 30 | Α | | ٧ _F | < | 1.8 | V | | t _{rr} | < | 70 | ns | | | I _{F(AV)}
V _F | I _{F(AV)} max. | I _{F(AV)} max. 2 x 30
V _F < 1.8 | #### **MECHANICAL DATA** Dimensions in mm Fig.1 SOT-227B. Types with Faston terminals are available on request (see overleaf). Baseplate is electrically isolated. Isolation voltage: 2500 V r.m.s. Capacitance: 45 pF. Supplied with device: 4 x M4 screws. September 1988 305 25E D ## N AMER PHILIPS/DISCRETE | BATINGS | | | T_0 | 3–19 | | |--|--|-------------------|---------------------------|------------------|---| | RATINGS | lus Maria | 450404 | | J-13 | | | Limiting values in accordance with the Abso | iute Waximum Syster | n (IEC 134). | | | | | Voltages | | | | | | | Repetitive peak reverse voltage | V _{RRM} | max. | 1000 | V | | | Non repetitive peak reverse voltage | V _{RSM} | max. | 1000 | V | | | Currents (per diode) | | | | | | | Average forward current;
switching losses negligible up to 100 kHz
square wave; $\delta = 0.5$; up to $T_{mb} = 50$ °C | levavo | max. | 30 | Δ | | | R.M.S. forward current | IF(AV) | max. | 30
70 | A
A | | | Repetitive peak forward current $t_p = 20 \mu s$, $\delta = 0.02$ | [[] F(RMS) | | | | | | Non-repetitive peak forward current half sine-wave | ^I FRM | max. | 375 | Α | | | t = 10 ms | I _{FSM} | max. | 200 | Α | | | t = 8.3 ms | FSM | max. | 240 | Α | | | I ² t for fusing (t = 10 ms) | l²t | max. | 200 | A ² s | | | Temperatures | | | | | | | Storage temperature | T _{stg} | | -40 to +150 | oC | | | Junction temperature | T_{j} | | -40 to +150 | οС | | | THERMAL RESISTANCE | | | | | | | From junction to mounting base per diode | R _{th j-mb} | = . | 1.5 | K/W | | | From junction to mounting base total | R _{th j-mb} | = | 0.8 | K/W | | | From mounting base to heatsink with heatsink compound | R _{th mb-h} | = | 0.1 | K/W | | | ORDERING NOTE | 6,4 | → -Ø 2,6
2,5 | | | | | Types with Faston terminals are available on request (see Fig.2). Omit suffix V from the type number when ordering, e.g. BYT230PI-1000. | 6.35 (¼") Faston terminal (x4) | | 20,7
max
9,1
8,9 | | | | Fig.2 SOT-227A. | ı | | т | | | | Dimensions in mm. | | | | | | | D2 4 3 D1 | 4.1 d. | 5 - 2 | 4 min 22,7 25,4 max | | • | | | ma | × | | | | 306 September 1988 N AMER PHILIPS/DISCRETE ## CHARACTERISTICS T_j = 25 °C unless otherwise stated | Forward voltage | | | | | |---|-----------------|---|-----|----| | $I_F = 30 \text{ A}; T_j = 100 ^{\circ}\text{C}$ | ٧ _F | < | 1.8 | ٧* | | I _F = 30 A | ٧ _F | < | 1.9 | ٧* | | Reverse current | | | | | | $V_R = V_{RRM max}$; $T_j = 100 ^{\circ}C$ | IR | < | 5.0 | mΑ | | VR = VRRM max | I _R | < | 100 | μΑ | | Reverse recovery when switched from $ F = 0.5 \text{ A to } F = 1 \text{ A measured at } F = 0.25 \text{ A}$ | | | | | | recovery time | t _{rr} | < | 70 | ns | | IF = 1 A to $V_R \ge 30 V$ with $-dI_F/dt = 15 A/\mu s$; recovery time | t _{rr} | < | 145 | ns | | IF = 2 A to $V_R \ge 30 V$ with $-dI_F/dt = 20 A/\mu s$; recovered charge | Ω_{c} | < | 250 | пC | DEVELOPMENT DATA Fig.3 Definition of t_{rr} and Q_s . September 1988 307 ^{*}Measured under pulse conditions to avoid excessive dissipation. # N AMER PHILIPS/DISCRETE SQUARE - WAVE OPERATION T-03-19 Fig.4 Forward power losses versus average forward current; per diode. Fig.5 Typical forward voltage versus forward current; $---T_j = 25$ °C; $----T_j = 100$ °C. 308 September 1988