
Thunderbolt IGBT®

The Thunderblot IGBT[®] is a new generation of high voltage power IGBTs. Using Non-Punch Through Technology, the Thunderblot IGBT[®] offers superior ruggedness and ultrafast switching speed.

- Low Forward Voltage Drop
- High Freq. Switching to 80KHz
- Low Tail Current
- RBSOA and SCSOA Rated

MAXIMUM RATINGS

All Ratings: $T_{c} = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT100GT60JR	UNIT	
V _{CES}	Collector-Emitter Voltage	600	- Volts	
V _{GE}	Gate-Emitter Voltage	±30		
I _{C1}	Continuous Collector Current @ $T_{C} = 25^{\circ}C$	148		
I _{C2}	Continuous Collector Current @ T _C = 100°C	80	Amps	
I _{CM}	Pulsed Collector Current ①	300		
SSOA	Switching Safe Operating Area @ $T_J = 150^{\circ}C$	300A @ 600V		
P _D	Total Power Dissipation	500	Watts	
T_,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150		
Τ _L	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	Units	
V _{(BR)CES}	Collector-Emitter Breakdown Voltage ($V_{GE} = 0V, I_{C} = 4mA$)	600				
V _{GE(TH)}	Gate Threshold Voltage ($V_{CE} = V_{GE}$, $I_{C} = 1.5$ mA, $T_{j} = 25^{\circ}$ C)	3	4	5	Volts	
V _{CE(ON)}	Collector-Emitter On Voltage ($V_{GE} = 15V, I_{C} = 100A, T_{j} = 25^{\circ}C$)	1.7	2.1	2.5		
	Collector-Emitter On Voltage ($V_{GE} = 15V, I_C = 100A, T_j = 125^{\circ}C$)		2.5			
I _{CES}	Collector Cut-off Current ($V_{CE} = 600V$, $V_{GE} = 0V$, $T_j = 25^{\circ}C$) ⁽²⁾			25	μA	
	Collector Cut-off Current ($V_{CE} = 600V$, $V_{GE} = 0V$, $T_j = 125^{\circ}C$) ⁽²⁾			TBD		
I _{GES}	Gate-Emitter Leakage Current ($V_{GE} = \pm 30V$)			300	nA	

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{ies}	Input Capacitance	Capacitance		5150		
C _{oes}	Output Capacitance	V _{GE} = 0V, V _{CE} = 25V		475		pF
C _{res}	Reverse Transfer Capacitance	f = 1 MHz		295		
V _{GEP}	Gate-to-Emitter Plateau Voltage	Gate Charge		8.0		V
Q _q	Total Gate Charge $^{(3)}$	V _{GE} = 15V		460		
Q _{ge}	Gate-Emitter Charge	V _{CE} = 300V		40		nC
Q _{gc}	Gate-Collector ("Miller") Charge	I _C = 100A		210		
SSOA	Switching Safe Operating Area	$T_J = 150^{\circ}C, R_G = 4.3\Omega, V_{GE} = 15V, L = 100\mu H, V_{CE} = 600V$	300			А
t _{d(on)}	Turn-on Delay Time	Inductive Switching (25°C)		40		
t _r	Current Rise Time	V _{CC} = 400V		75		1
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		320		ns
t _f	Current Fall Time	I _C = 100A		100		1
E _{on1}	Turn-on Switching Energy ④	$R_{G} = 4.3\Omega$		3250		
E _{on2}	Turn-on Switching Energy (Diode) igitimes	$T_J = +25^{\circ}C$		3525		μJ
E _{off}	Turn-off Switching Energy ⁶			3125		
t _{d(on)}	Turn-on Delay Time	Inductive Switching (125°C)		40		
t _r	Current Rise Time	V _{CC} = 400V		75		ns
t _{d(off)}	Turn-off Delay Time	V _{GE} = 15V		350		
t _f	Current Fall Time	I _C = 100A		100		
E _{on1}	Turn-on Switching Energy ④	$R_{G} = 4.3\Omega$		3275		
E _{on2}	Turn-on Switching Energy (Diode) $^{(5)}$			4650		μJ
E _{off}	Turn-off Switching Energy 6			3750		

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	MIN	ТҮР	МАХ	UNIT
R _{0JC}	Junction to Case (IGBT)			.25	°C/W
$R_{ ext{ hetaJC}}$	Junction to Case (DIODE)			N/A	°C/vv
W _T	Package Weight		29.2		gm
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.)	2500			Volts

(1) Repetitive Rating: Pulse width limited by maximum junction temperature.

(2) For Combi devices, ${\rm I}_{\rm ces}$ includes both IGBT and FRED leakages

③ See MIL-STD-750 Method 3471.

(4) E_{on1} is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.

(5) E_{on2} is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)

6 E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)

APT Reserves the right to change, without notice, the specifications and information contained herein.

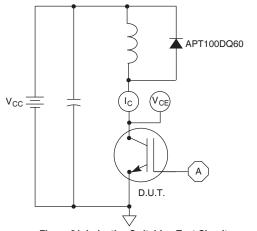


Figure 21, Inductive Switching Test Circuit

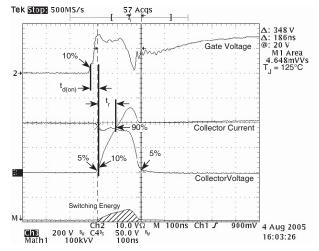


Figure 22, Turn-on Switching Waveforms and Definitions

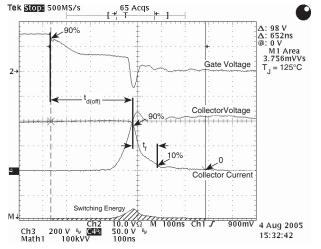
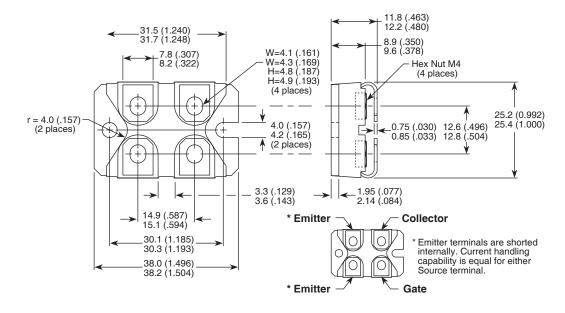



Figure 23, Turn-off Switching Waveforms and Definitions

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

ISOTOP[®] is a Registered Trademark of SGS Thomson. APT's products are covered by one or more of U.S.patents 4,895,810 5045,903 5089,434 5182,234 5019,522 5,262,336 6503,786 5256,583 4748,103 5283,202 5231,474 5434,095 5528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.